
操作手册 **Micropilot FMR67B**

雷达液位计 HART

A0023555

- 请妥善保存文档, 便于操作或使用设备时查看
- ■避免出现人员或装置危险:必须仔细阅读"基本安全指南"章节,以及针对特定操作步骤的文档中的所有其他安全指南

制造商保留修改技术参数的权利,恕不另行通知。Endress+Hauser 当地销售中心将为您提供最新文档信息和更新说明。

目录

1	文档信息5		5.3.8 旋转显示模块
1.1	文档用途5		5.3.9 调整显示模块的安装位置 19
1.2	图标5		5.3.10 关闭外壳盖
1.2	1.2.1 安全图标	5.4	安装后检查21
	1.2.2 特定信息图标和图例5		
1.3	文档资料6	6	电气连接22
1.7	1.3.1 《技术资料》 (TI) 6	6.1	
	1.3.2 《简明操作指南》 (KA) 6	0.1	6.1.1 带锁定螺丝的外壳盖
	1.3.3 《安全指南》 (XA) 6		6.1.2 等电势连接
	1.3.4 《功能安全手册》 (FY) 6	6.2	
1.4	缩写含义说明6	0.2	6.2.1 供电电压
1.5	注册商标7		6.2.2 电缆规格
1.7	1上加 同 小		6.2.3 4 20 mA HART
_	++41.4-6.1.4+		6.2.4 过电压保护
2	基本安全指南 8		6.2.5 接线
2.1	人员要求8		6.2.6 接线端子分配
2.2	指定用途8		6.2.7 电缆入口
2.3	工作场所安全8		6.2.8 仪表插头
2.4	操作安全9	6.3	确保防护等级
2.5	产品安全9	0.5	6.3.1 电缆入口
2.6	SIL 功能安全认证 (可选) 9	6.4	
2.7	IT 安全	0.4	上按归他旦
2.8	设备的 IT 安全 9	7	操作方式30
		-	
3	产品描述 10	7.1	操作方式概述30
3.1	产品设计10	7.2	HART 电子插件上的操作按键和 DIP 开关 30
J.1) 阳极,	7.3	操作菜单的结构和功能30
	对化水水水平之中。 11		7.3.1 用户角色及其访问权限 30
4	到货验收和产品标识 11	7.4	通过现场显示单元访问操作菜单 31
4.1	到货验收11		7.4.1 仪表显示单元 (可选) 31
4.2	产品标识11		7.4.2 通过 Bluetooth®蓝牙无线技术操作
	4.2.1 铭牌 11		(可选) 31
	4.2.2 制造商地址 11	7.5	通过调试软件访问操作菜单
4.3	储存和运输 12	7.6	DeviceCare
	4.3.1 储存条件 12	7.7	7.6.1 功能范围 32
	4.3.2 将产品运输至测量点12	7.7	FieldCare
			7.7.1 功能范围 33
5	安装		≠1), D ₁ , D ₂
5.1	常规指南13	8	系统集成34
5.2	安装要求	8.1	设备描述文件概述 34
٠.۵	5.2.1 罐体内部装置	8.2	HART 通信传输的测量变量 34
	5.2.2 避免出现干扰回波		
	5.2.3 竖直安装天线	9	调试35
	5.2.4 径向调节天线位置 14		
	5.2.5 优化方法	9.1	准备工作
5.3	安装设备14	9.2	功能检查
ر. بر. بر. بر. بر. بر. بر. بر. بر. بر. ب	5.3.1 65 mm (2.56 in)喇叭天线 14	9.3	通过 FieldCare 和 DeviceCare 建立连接 35
	5.3.2 65 mm (2.56 in)喇叭天线,带天线		9.3.1 通过 HART 通信
	角度调节装置 15		9.3.2 通过服务接口 (CDI) 36
	5.3.3 50 mm (2 in)水滴型天线,PTFE 16	9.4	通过软件设置设备地址
	5.3.4 80 mm (3 in)天线(齐平安装) 17	9.5	设置显示语言
	5.3.5 80 mm (3 in)天线 (齐平安装) ,带		9.5.1 现场显示单元
	天线角度调节装置 17		9.5.2 调试软件 36
	5.3.6 空气吹扫接口	9.6	设备设置
	5.3.7 旋转外壳		9.6.1 料位测量 37
	// - / /	I .	

9.7 9.8	9.6.2 通过调试向导进行调试记录回波曲线	37 37 38
10	操作	39
10.1	读取设备锁定状态	39
10.2	读取测量值	39
10.3	基于过程条件调节设备	39
10.4	Heartbeat Technology 心跳技术(可选)	39
	10.4.1 Heartbeat Verification	39
	10.4.2 心跳自校验和心跳自监测	39
11	诊断和故障排除	40
11.1	常规故障排除	40
11.1	11.1.1 常见故障	40
11.2	SmartBlue 操作错误	40
11.3	诊断信息	41
11.5	11.3.1 通过现场显示单元查看诊断信息	41
	11.3.2 调试软件中的诊断信息	42
	11.3.3 状态信号	42
	11.3.4 诊断事件和事件文本	42
11.4	补救措施查看	43
	11.4.1 图形显示屏, 带按键	43
	11.4.2 操作菜单	43
11.5	调整诊断信息	44
11.6	诊断事件列表	44
11.7	事件日志	45
	11.7.1 事件历史	45
	11.7.2 筛选事件日志	46 46
11.8	11.7.3 信息事件概述复位设备	40
11.0	11.8.1 通过调试软件复位设备	47
	11.8.2 通过电子插件上的按键复位测量设	
	备	47
	设备信息	
11.10	固件更新历史	48
12	维护	49
12.1	外部清洗	49
12.2	密封圈	49
13	维修	50
13.1	概述	50
	13.1.1 维修理念	50
12.2	13.1.2 防爆型设备的维修	50
13.2 13.3	备件 更换	50 50
15.5	13.3.1 HistoROM	50
13.4	返厂	50
13.5	处置	51
14	附件	52
14.1		52
14.2 14.3	塑料防护罩可变角度法兰密封圈	52 53
14.5	可受用及依二省到圈 · · · · · · · · · · · · · · · · · · ·	

	14.3.2 DN100 可调法兰密封圈	53	
	14.3.3 DN150 可调法兰密封圈	54	
	14.3.4 ASME 3" / JIS 80A 可调法兰密封圈	54	
	14.3.5 ASME 4"可调法兰密封圈	55	
	14.3.6 ASME 6" / JIS 150A 可调法兰密封		
	圈	55	
14.4	M12 插座	56	
14.5	分离型显示单元 FHX50B	57	
14.6	Commubox FXA195 HART 5		
14.7	HART 回路转换器 HMX50 5		
14.8	FieldPort SWA50 58		
14.9	WirelessHART 适配器 SWA70 5		
	Fieldgate FXA42 58		
	Field Xpert SMT70		
	DeviceCare SFE100		
14.13	FieldCare SFE500 59		
14.14	Memograph M 5		
14.15	RN42 5		
15	技术参数	60	
15.1	输入	60	
15.2	输出	61	
15.3	环境条件	64	
15.4		74	
	✓□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	, 1	
			

1 文档信息

1.1 文档用途

文档包含设备生命周期内各个阶段所需的所有信息:从产品标识、到货验收和储存,至安装、电气连接、操作和调试,以及故障排除、维护和废弃。

1.2 图标

1.2.1 安全图标

▲ 危险

危险状况警示图标。疏忽会导致人员严重或致命伤害。

▲ 警告

危险状况警示图标。疏忽可能导致人员严重或致命伤害。

A dub

危险状况警示图标。疏忽可能导致人员轻微或中等伤害。

注意

操作和其他影响提示信息图标。不会导致人员伤害。

1.2.2 特定信息图标和图例

✓ 允许

允许的操作、过程或动作

☑☑ 推荐

推荐的操作、过程或动作

※ 禁止

禁止的操作、过程或动作

1 提示

附加信息

参见文档

参考图

提示信息或重要分步操作

1. 2. 3.

操作步骤

操作结果

通过现场显示单元操作

通过调试软件操作

写保护参数

1, 2, 3...

部件号

A, B, C...

视图

▲→ 国 安全指南

遵守相关《操作手册》中的安全指南

1.3 文档资料

登陆 Endress+Hauser 公司网站 (www.endress.com/downloads) 的下载区下载下列文档资料:

- 配套技术文档资料的查询方式如下:
 - 设备浏览器 (www.endress.com/deviceviewer): 输入铭牌上的序列号
 - 在 Endress+Hauser Operations app 中: 输入铭牌上的序列号或扫描铭牌上的二维码。

1.3.1 《技术资料》 (TI)

设计规划指南

文档包含设备的所有技术参数、附件和可以随设备一起订购的其他产品的简要说明。

1.3.2 《简明操作指南》 (KA)

引导用户快速获取首个测量值

文档包含所有必要信息, 从到货验收到初始调试。

1.3.3 《安全指南》 (XA)

防爆型设备都有配套《安全指南》 (XA) 。防爆手册是《操作手册》的组成部分。

₽ 设备铭牌上标识有配套《安全指南》 (XA) 的文档资料代号。

1.3.4 《功能安全手册》 (FY)

取决于 SIL 认证, 《功能安全手册》 (FY) 是《操作手册》的组成部分, 同时还可作为《技术资料》和《安全指南》 (ATEX 认证型仪表) 的配套文档资料。

♀ 《功能安全手册》 (FY) 中规定了实现保护功能所需满足的不同要求。

1.4 缩写含义说明

BA

《操作手册》

KA

《简明操作指南》

ΤI

《技术资料》

SD

《特殊文档》

XΑ

《安全指南》

PN

标称压力

MWP

最大工作压力

MWP 标识在铭牌上。

ToF

行程时间

FieldCare

设备组态设置软件(支持功能升级)和工厂资产管理集成解决方案

DeviceCare

通用组态设置软件,适用 Endress+Hauser 的 HART、PROFIBUS、FOUNDATION Fieldbus 和以太网通信型现场设备

DTM

设备类型管理器

ε_r (Dk 值)

相对介电常数

调试软件

术语"调试软件"代指以下应用软件:

- FieldCare / DeviceCare, 通过 HART 通信和个人计算机操作
- SmartBlue app, 在 Android 或 iOS 智能手机或平板电脑中操作

PLC

可编程逻辑控制器

1.5 注册商标

HART®

现场通信组织的注册商标 (美国德克萨斯州奥斯汀)

Bluetooth®

Bluetooth®文字和图标是 Bluetooth SIG 公司的注册商标, Endress+Hauser 获得准许使用权。其他注册商标和商标名分别归相关公司所有。

Apple[®]

Apple、Apple 图标、iPhone 和 iPod touch 是苹果公司的注册商标,已在美国和其他国家注册登记。App Store 是苹果公司的服务商标。

Android®

Android、Google Play 和 Google Play 图标是谷歌公司的注册商标。

KALREZ®, VITON®

杜邦高性能弹性体有限公司的注册商标 (美国威尔明顿)

2 基本安全指南

2.1 人员要求

安装、调试、诊断和维护人员必须符合下列要求:

- ▶ 经培训的合格专业人员必须具有执行特定功能和任务的资质。
- ▶ 操作人员必须经过工厂厂长授权。
- ▶ 熟悉联邦/国家法规。
- ► 开始操作前,操作人员必须事先阅读《简明操作指南》,理解本文档、补充文档资料和证书(取决于实际应用)中的各项指南。
- ▶ 操作人员必须遵守指南要求,符合相关规定。

操作人员必须符合下列要求:

- ▶ 操作人员由工厂厂方/操作员按照任务要求进行指导和授权。
- ▶ 操作人员必须遵守指南要求。

2.2 指定用途

应用和介质

本文档中介绍的测量设备主要用于固体散料的连续非接触式料位测量。其工作频率约为 80 GHz, 峰值辐射功率为 6.3 mW, 平均输出功率为 63 μW, 允许任意安装在密闭金属容器外使用 (例如安装在料堆上方)。设备工作时对人员和动物无任何危害。

根据"技术参数"中列举的限定值要求,以及指南和补充文档资料中列举的使用条件要求,测量设备只能测量下列参数:

- ▶ 过程变量测量值:物位、距离、信号强度
- ▶ 过程变量计算值:任意形状的容器中介质的体积或质量

为了保证测量设备能够始终正常工作:

- ▶ 确保测量设备的接液部件材质完全能够耐受介质腐蚀。
- ▶ 遵守"技术参数"章节中规定的限定值要求。

使用不当

由于使用不当或用于非指定用途导致的设备损坏,制造商不承担任何责任。

避免机械损坏:

▶ 禁止使用锐利或坚硬物体触碰或清洁设备表面。

临界工况

▶ 测量特殊流体或使用清洗液时,Endress+Hauser 十分乐意帮助您验证接液部件材质的耐腐蚀性,但对此不做任何担保和承担任何责任。

其他风险

与过程的热交换和电子模块自身的功率消耗可能导致电子腔外壳及其内部部件 (例如显示单元、主要电子模块和 I/O 电子模块) 的温度升高至 80 ℃ (176 ℉)。操作过程中,传感器温度可能会接近介质温度。

接触表面有导致烫伤的危险!

▶ 进行高温流体测量时,确保已采取防护措施,避免发生接触性烫伤。

2.3 工作场所安全

操作设备时:

- ▶ 遵守联邦/国家法规,穿戴人员防护装置。
- ▶ 进行仪表接线操作前,首先需要切断电源。

2.4 操作安全

存在人员受伤的风险!

- ▶ 只有完全满足技术规范且无错误和故障时才能操作设备。
- ▶ 操作员有责任确保设备无故障运行。

改装设备

如果未经授权,禁止改装设备,改装会导致不可预见的危险:

▶ 如需改装,请咨询制造商。

维修

确保设备始终安全、可靠运行:

- ▶ 未经明确许可,禁止修理设备。
- ▶ 遵守联邦/国家法规中的电子设备修理准则。
- ▶ 仅允许使用制造商的原装备件和附件。

危险区

在危险区中使用设备时(例如防爆要求、压力容器安全),应避免人员受伤或装置损坏 危险:

- ▶ 对照铭牌检查订购的设备是否允许在危险区中使用。
- ▶ 注意单独成册的补充文档中列举的技术参数,补充文档是《操作手册》的组成部分。

2.5 产品安全

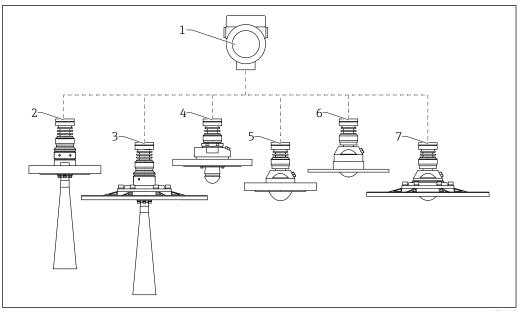
设备基于工程实践经验设计,符合最先进的安全要求。通过出厂测试,可以安全使用。设备满足常规安全标准和法规要求,并符合 EU 符合性声明中列举的 EU 准则的要求。Endress+Hauser 确保粘贴有 CE 标志的设备满足上述要求。

2.6 SIL 功能安全认证 (可选)

对于在有功能安全要求的应用场合中使用的设备,必须严格遵守《功能安全手册》中列举的各项要求。

2.7 IT 安全

必须按照《操作手册》说明安装和使用设备,否则,不满足质保条件。设备自带安全防护机制,防止意外更改设置。IT 安全措施根据操作员安全标准制定,旨在为设备和设备数据传输提供额外防护,必须由操作员亲自实施。

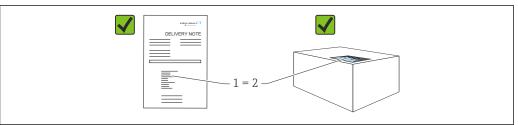

2.8 设备的 IT 安全

设备提供特定安全功能,帮助操作员采取保护措施。上述功能由用户自行设置,正确设置后能够实现更高操作安全性。在后续章节中概述了以下重要功能:

- 通过硬件写保护开关实现写保护功能
- 访问密码(通过显示单元、蓝牙或 FieldCare、DeviceCare、ASM、PDM 操作)

3 产品描述

产品设计 3.1



■ 1 Micropilot FMR67B 的结构设计

- 电子腔外壳 1
- 2 DN65 喇叭天线, 带法兰
- DN65 喇叭天线,带 UNI 法兰和天线角度调节装置 3
- 5
- 50 mm (2 in)水滴型天线,带法兰;可选配空气吹扫接口80 mm (3 in)天线(齐平安装),带法兰;可选配空气吹扫接口80 mm (3 in)天线(齐平安装),带UNI法兰;可选配空气吹扫接口80 mm (3 in)天线(齐平安装),带UNI法兰;可选配空气吹扫接口80 mm (3 in)天线(齐平安装),带UNI法兰和天线角度调节装置;可选配空气吹扫接口

4 到货验收和产品标识

4.1 到货验收

Δ0016870

到货后需要进行下列检查:

- 发货清单 (1) 上的订货号是否与产品粘贴标签 (2) 上的订货号一致?
- 物品是否完好无损?
- 铭牌参数是否与发货清单上的订购信息一致?
- 随箱包装中是否提供文档资料?
- 如需要 (参照铭牌): 是否提供《安全指南》 (XA) 文档?

😭 如果不满足任一上述条件,请咨询 Endress+Hauser 当地销售中心。

4.2 产品标识

设备标识信息如下:

- 铭牌参数
- 发货清单上的扩展订货号及订购选项
- ▶ 设备浏览器 (www.endress.com/deviceviewer); 手动输入铭牌上的序列号。
 - □ 显示测量设备的所有信息。
- ► 在 Endress+Hauser Operations app 中: 手动输入铭牌上的序列号,或扫描铭牌上的二维码。
 - ┕ 显示测量设备的所有信息。

4.2.1 铭牌

铭牌上标识法律规定的相关设备信息, 例如:

- ■制造商名称
- ■订货号、扩展订货号、序列号
- 技术参数、防护等级
- ■固件版本号、硬件版本号
- 防爆认证信息,参见配套《安全指南》 (XA)
- 二维码 (包含设备信息)

4.2.2 制造商地址

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany

产地:参见铭牌。

4.3 储存和运输

4.3.1 储存条件

- 使用原包装
- 在洁净的干燥环境中储存设备, 采取冲击防护措施。

储存温度范围

参见《技术资料》。

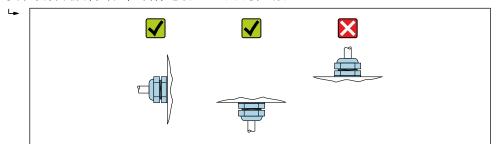
4.3.2 将产品运输至测量点

▲ 警告

运输不当!

外壳或传感器会损坏或掉落。存在人员受伤的风险!

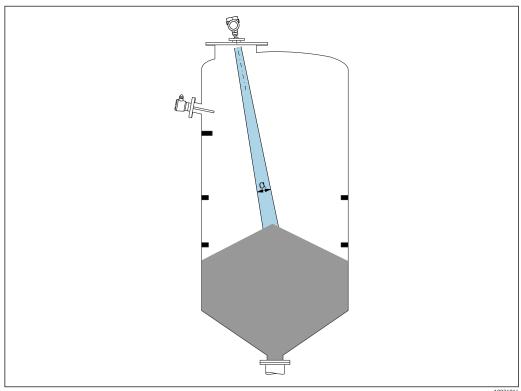
- ▶ 使用原包装将设备运输至测量点,或手握过程连接搬运设备。
- ▶ 始终在过程连接处使用起吊设备(吊绳、吊环等)抬起设备,禁止通过电子腔外壳或 传感器抬起设备。注意设备重心,避免意外倾倒或滑落。


安装 5

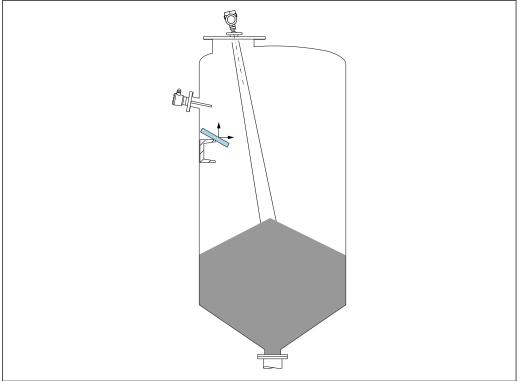
常规指南 **5.1**

▲ 警告

如果在潮湿环境中打开外壳,设备防护等级失效。


- ▶ 仅允许在干燥环境中打开设备外壳!
- 1. 安装设备或旋转外壳,确保电缆入口不会朝上放置。

- 2. 始终牢固拧紧外壳盖和电缆入口。
- 3. 反向拧紧电缆入口。
- 4. 布线时必须向下弯曲电缆,形成排水回路。


5.2 安装要求

5.2.1 罐体内部装置

在信号波束范围内避免安装任何内部装置 (例如限位开关、温度传感器、立杆、真空 环、加热盘管、挡板等)。注意波束角α。

5.2.2 避免出现干扰回波

A003181

倾斜安装的金属反射板能够散射雷达波信号, 有助于减少干扰回波。

5.2.3 竖直安装天线

使天线垂直于介质表面安装。

到果天线不垂直于介质表面安装,会减小天线的最大覆盖范围,或者额外产生干扰信号。

5.2.4 径向调节天线位置

天线无需进行径向安装位置调节。

5.2.5 优化方法

干扰抑制

通过电子干扰回波抑制优化测量结果。 参见确认距离 参数。

5.3 安装设备

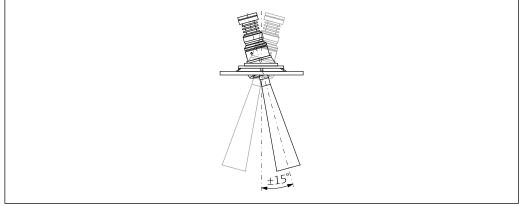
5.3.1 65 mm (2.56 in)喇叭天线

关于安装短管的说明

最大安装短管高度 H_{max} 取决于安装短管管径 D。

φD \mathbf{H}_{\max} 80 ... 100 mm (3.2 ... 4 in) 1700 mm (67 in) 2100 mm (83 in) 100 ... 150 mm (4 ... 6 in) ≥ 150 mm (6 in) 3200 mm (126 in) øD

最大安装短管高度 H_{max} 与安装短管管径 D 之间的关系


如果超出最大安装短管高度,肯定会降低测量性能。

请注意以下几点:

- 安装短管底部必须光滑、无毛刺。
- 安装短管边缘应倒圆处理。
- ■必须执行干扰回波抑制。
- 使用的安装短管高度超过表格中列举的数值时,请联系制造商的支持服务部门。

5.3.2 65 mm (2.56 in)喇叭天线, 带天线角度调节装置

65 mm (2.56 in)喇叭天线可选用自带天线角度调节装置的 UNI 法兰。使用天线角度调节 装置安装时,在各个方向上天线轴线的最大偏离角度均为15°。天线角度调节装置用于 根据固体散料堆积角择优调节测量信号发射角。

€ 2 喇叭天线, 带天线角度调节装置

关于安装短管的说明

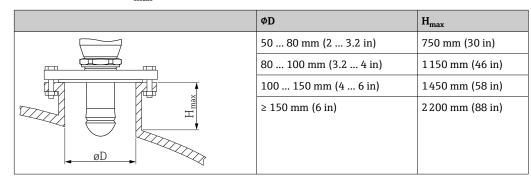
最大安装短管高度 H_{max} 取决于安装短管管径 D。

最大安装短管高度 H_{max} 取决于安装短管管径 D

	ΦD	H _{max}
	80 100 mm (3.2 4 in)	1700 mm (67 in)
	100 150 mm (4 6 in)	2 100 mm (83 in)
M H H max	≥ 150 mm (6 in)	3 200 mm (126 in)

- 🚹 如果超出最大安装短管高度,肯定会降低测量性能。
 - 请注意以下几点:
 - 安装短管底部必须光滑、无毛刺。
 - 安装短管边缘应倒圆处理。
 - 必须执行干扰回波抑制。
 - ■使用的安装短管高度超过表格中列举的数值时,请联系制造商的支持服务部门。

5.3.3 50 mm (2 in)水滴型天线, PTFE


关于螺纹连接的说明

- 仅允许通过六角螺栓上的转动夹持面旋转拧紧设备。
- 工具: 55 mm 开口扳手
- 最大允许扭矩: 50 Nm (36 lbf ft)

关于安装短管的说明

最大安装短管高度 H_{max} 取决于安装短管管径 D。

最大安装短管高度 H_{max} 与安装短管管径 D 之间的关系

🚹 如果超出最大安装短管高度,肯定会降低测量性能。

请注意以下几点:

- 安装短管底部必须光滑、无毛刺。
- 安装短管边缘应倒圆处理。
- 必须执行干扰回波抑制。
- 使用的安装短管高度超过表格中列举的数值时,请联系制造商的支持服务部门。

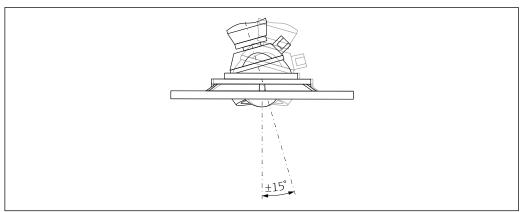
5.3.4 80 mm (3 in)天线 (齐平安装)

关于安装短管的说明

最大安装短管高度 H_{max} 取决于安装短管管径 D。

80 mm (3 in)天线 (齐平安装) 安装在安装短管中

	ØD	H _{max}
	80 100 mm (3.2 4 in)	1750 mm (70 in)
	100 150 mm (4 6 in)	2200 mm (88 in)
øD H	≥ 150 mm (6 in)	3300 mm (132 in)


如果超出最大安装短管高度,肯定会降低测量性能。

请注意以下几点:

- 安装短管底部必须光滑、无毛刺。
- 安装短管边缘应倒圆处理。
- ■必须执行干扰回波抑制。
- 使用的安装短管高度超过表格中列举的数值时,请联系制造商的支持服务部门。

80 mm (3 in)天线 (齐平安装), 带天线角度调节装置 5.3.5

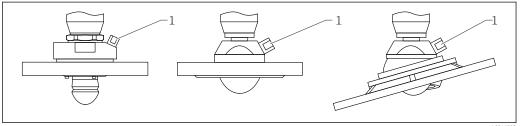
80 mm (3 in)喇叭天线 (齐平安装) 可选用自带天线角度调节装置的 UNI 法兰。使用天 线角度调节装置安装时,在各个方向上天线轴线的最大偏离角度均为15°。天线角度调 节装置用于根据固体散料堆积角择优调节测量信号发射角。

A0046592

₩ 3 天线 (齐平安装), 带天线角度调节装置

关于安装短管的说明

最大安装短管高度 H_{max} 取决于安装短管管径 D。


最大安装短管高度 H_{max} 取决于安装短管管径 D

	ФD	H _{max}
	最小 80 100 mm (3 4 in)	1450 mm (57 in)
	100 150 mm (4 6 in)	1800 mm (71 in)
N H H H H H H H H H H H H H H H H H H H	≥ 150 mm (6 in)	2700 mm (106 in)

- 如果超出最大安装短管高度,肯定会降低测量性能。
 - 请注意以下几点:
 - ■安装短管底部必须光滑、无毛刺。
 - 安装短管边缘应倒圆处理。
 - 必须执行干扰回波抑制。
 - ●使用的安装短管高度超过表格中列举的数值时,请联系制造商的支持服务部门。

5.3.6 空气吹扫接口

在高浓度粉尘应用场合,内置空气吹扫接口可以防止天线堵塞。建议采用间歇工作方式。

A0046593

图 4 天线,带空气吹扫接口

1 NPT 1/4"或 G 1/4"空气吹扫接口

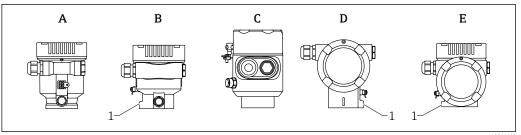
空气吹扫压力范围

- 间歇工作方式:
 - 最大 6 bar (87 psi)
- 持续工作方式:

200 ... 500 mbar (3 ... 7.25 psi)

空气吹扫接口

- 工具:
 - 13 mm 开口扳手 (G 1/4")
 - 14 mm 开口扳手 (NPT)
 - 17 mm 开口扳手 (NPT 转接头)
- 最小扭矩: 6 Nm (4.4 lbf ft)
- 最大扭矩: 7 Nm
- ₽ 必须使用干燥空气进行吹扫
 - 通常仅允许在必要时进行吹扫,频繁吹扫会导致机械损伤 (磨损)


5.3.7 旋转外壳

松开锁定螺丝,外壳最大可旋转 380°。

优势

- 将外壳调整至最佳位置, 方便安装工作
- 仪表操作便捷
- 旋转现场显示单元, 方便现场读数 (可选)

18

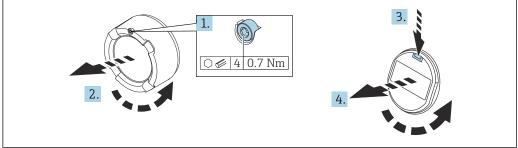
A0046660

- 单腔室塑料外壳 (无锁定螺丝) Α
- В 单腔室铝外壳
- С 单腔室外壳, 316L, 卫生型 (无锁定螺丝)
- D 双腔室外壳
- Ε 双腔室外壳, L型
- 锁定螺丝

注意

不能完全拧开外壳。

- ▶ 松开外部锁定螺丝, 最多转动 1.5 圈。如果过度或完全松开锁定螺丝 (超出螺丝定位 点),将导致小部件(计数盘)松动或脱落。
- ▶ 拧紧锁定螺丝 (4 mm (0.16 in)内六角), 最大扭矩为 3.5 Nm (2.58 lbf ft) ± 0.3 Nm (0.22 lbf ft).

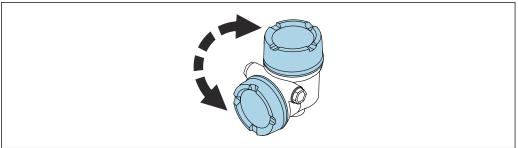

旋转显示模块 5.3.8

▲ 警告

带电!

存在电击和/或爆炸风险!

▶ 断电后方可打开测量设备外壳。

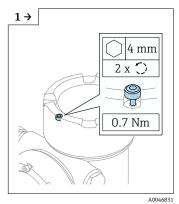


A0038224

- 1. 如果已安装电子腔盖: 使用内六角扳手松开电子腔盖锁扣螺丝。
- 2. 从变送器外壳上拧下电子腔盖,检查电子腔盖密封圈。
- 3. 按下释放片, 拆下显示模块。
- 4. 将显示模块旋转至所需位置:每个方向上的最大旋转角度均为 4×90°。将显示模 块安装在电子腔中的所需位置上, 直至啮合到位。重新将电子腔盖拧至变送器外壳 上。如果已安装电子腔盖: 使用内六角扳手拧紧电子腔盖锁扣螺丝, 紧固扭矩为 $0.7 \text{ Nm} (0.52 \text{ lbf ft}) \pm 0.2 \text{ Nm} (0.15 \text{ lbf ft})$

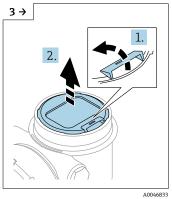
5.3.9 调整显示模块的安装位置

对于采用 L 型双腔室外壳的设备型号,可以调整显示模块的安装位置。

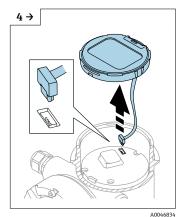


▲ 警告

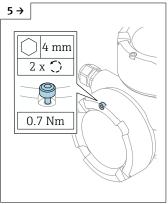
带电!


存在电击和/或爆炸风险!

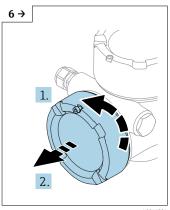
▶ 断电后方可打开测量设备外壳。

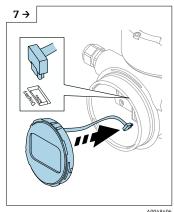


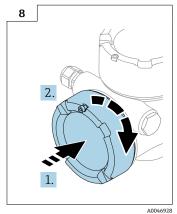
2 →



如果已安装显示模块盖板: 使 用内六角扳手松开显示模块盖 板锁扣螺丝。 ▶ 拧下显示模块盖板,检查盖板 密封圈。


▶ 按下释放片,取出显示模块。


▶ 拔下连接线插头。


如果已安装接线腔盖: 使用内 六角扳手松开接线腔盖锁扣螺 44.

▶ 拧下接线腔盖,检查盖板密封 圈。将接线腔盖 (而非显示模 块盖板) 拧到电子腔上。如果 已安装接线腔盖: 使用内六角 扳手拧紧接线腔盖锁扣螺丝。

- ▶ 将显示模块连接线插头插入接 线腔。
- ▶ 将显示模块安装到所需位置, 直至啮合到位。

▶ 将显示模块盖板重新牢固拧至 外壳上。如果已安装显示模块 盖板:使用内六角扳手以 0.7 Nm (0.52 lbf ft)扭矩拧紧 显示模块盖板锁扣螺丝。

5.3.10 关闭外壳盖

注意

灰尘会导致螺纹和外壳损坏!

- ▶ 清理外壳盖和外壳螺纹上的灰尘 (例如砂石)。
- ▶ 关闭外壳盖时如遇明显阻力,检查螺纹上是否存在灰尘并进行清理。

₩ 外壳螺纹

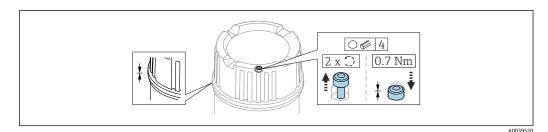
可在电子部件和接线腔的螺纹上涂抹抗摩擦涂层。 以下适用于所有外壳材质:

☑外壳螺纹无需润滑。

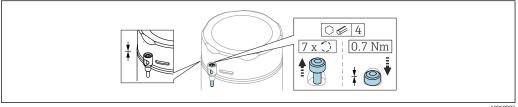
5.4 安装后检查

- □设备是否完好无损(外观检查)?
- □测量点标识和标签是否正确(外观检查)?
- □是否采取充足的测量设备防护措施,避免直接日晒雨淋?
- □ 固定螺丝和外壳盖锁扣是否均已牢固拧紧?
- □测量设备是否符合测量点技术规范? 例如:
- ■□ 过程温度
- □ 过程压力
- □ 环境温度
- □ 测量范围

电气连接 6


6.1 连接要求

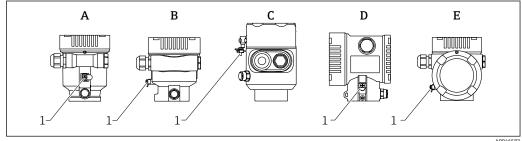
6.1.1 带锁定螺丝的外壳盖


使用特定防爆型式的防爆型设备时, 使用锁定螺丝锁紧外壳盖。

如果锁定螺丝安装错误, 外壳盖无法提供良好的密封性。

- ▶ 打开外壳盖: 松开外壳盖锁扣上的螺丝, 旋转不超过2圈, 防止螺丝掉落。安装外壳 盖,检查外壳盖密封圈。
- 关闭外壳盖: 将外壳盖牢固拧至外壳上, 确保锁定螺丝安装正确。外壳盖和外壳之间 不得有任何缝隙。

₩ 5 带锁定螺丝的外壳盖

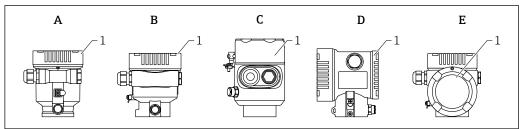


€ 6 带锁定螺丝的外壳盖; 卫生型外壳 (仅适用于粉尘防爆场合)

A0050983

等电势连接 6.1.2

禁止连接仪表的保护性接地端。如需要,仪表接线前将等电势线连接至变送器的外部接 地端。


- 单腔室塑料外壳 Α
- В 单腔室铝外壳
- 单腔室外壳, 316L, 卫生型 (防爆设备) С
- D 双腔室外壳
- Е 双腔室外壳, L型
- 接地端, 连接等电势线

▲ 警告

爆炸危险!

- ▶ 在防爆危险区中使用时,参见单独成册的《安全指南》文档。
- ▶ 为实现最佳电磁兼容性:
 - 等电势线尽可能短
 - 横截面积不小于 2.5 mm² (14 AWG)

6.2 连接设备

A0046659

- A 单腔室塑料外壳
- B 单腔室铝外壳
- C 单腔室外壳, 316L, 卫生型
- D 双腔室外壳
- E 双腔室外壳, L型
- 1 接线腔盖
- 设备配备单腔室外壳 (316L; 卫生型), 线路末端必须安装缆塞。只能使用 1 个接口。
- ₩ 外売螺纹

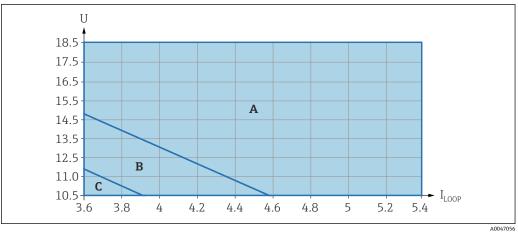
可在电子部件和接线腔的螺纹上涂抹抗摩擦涂层。 以下适用于所有外壳材质:

✓外壳螺纹无需润滑。

6.2.1 供电电压

供电电压取决于所选的设备防爆认证类型

非防爆、Exd防爆、Exe 防爆	10.5 35 V _{DC}
Exi防爆	10.5 30 V _{DC}
标称电流	4 20 mA


必须对供电单元进行测试,确保满足安全要求(例如 PELV、SELV、2 类电源),以及符合相关协议规范。

IEC/EN61010-1 标准规定必须为设备安装适用的断路保护器

仪表显示单元和蓝牙功能

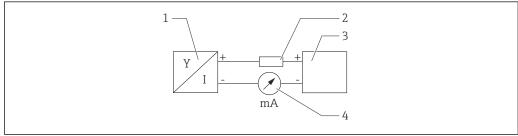
取决于供电电压和电流消耗 (参见下图)

- 开启或关闭背光
- 可以选择开启或关闭蓝牙功能 (订购选项)

- 开启显示单元背光, 开启蓝牙功能 (可选) Α
- 关闭显示单元背光, 开启蓝牙功能 (可选) В
- 关闭显示单元背光, 关闭蓝牙功能

6.2.2 电缆规格

标准电缆截面积


- 电源
 - 0.5 ... 2.5 mm² (20 ... 13 AWG)
- 保护性接地或电缆屏蔽层接地 $> 1 \text{ mm}^2 (17 \text{ AWG})$
- 外部接地端
 - 0.5 ... 4 mm² (20 ... 12 AWG)

电缆外径

电缆外径取决于所使用的缆塞

- 塑料缆塞:
 - Ø 5 ... 10 mm (0.2 ... 0.38 in)
- 镀镍黄铜缆塞:
 - Ø 7 ... 10.5 mm (0.28 ... 0.41 in)
- 不锈钢缆塞:
 - Ø 7 ... 12 mm (0.28 ... 0.47 in)

6.2.3 4 ... 20 mA HART

€ 7 HART 信号回路连接框图

- 1 HART 设备
- HART 通信电阻 2
- 3 电源
- 万用表或电流表

😭 使用低阻抗电源时,必须在信号回路中串联 HART 通信电阻(250 Ω)。

考虑电压降:

安装 250 Ω 通信电阻时,最大电压降为 6 V

6.2.4 过电压保护

可通过产品选型表的"安装附件"选择过电压保护

不带选配过电压保护单元的仪表

设备符合产品标准 IEC/DIN EN 61326-1 (表 2: 工业环境) 的要求。

执行 IEC / DIN EN 61326-1 标准规定的瞬态过电压 (浪涌) 测试 (IEC / DIN EN 61000-4-5 浪涌),根据端口类型 (直流电、输入/输出端口)施加不同的测试电压:直流电端口和输入/输出端口的测试电压为 1000 V 线对地

带选配过电压保护单元的仪表

- 火花电压: 最小 400 V_{DC}
- 根据 IEC / DIN EN 60079-14 第 12.3 节 (IEC / DIN EN 60060-1 第 7 章) 进行测试
- 标称放电电流: 10 kA

注意

损坏设备

▶ 请务必通过内置过电压保护单元进行设备接地。

过电压保护等级

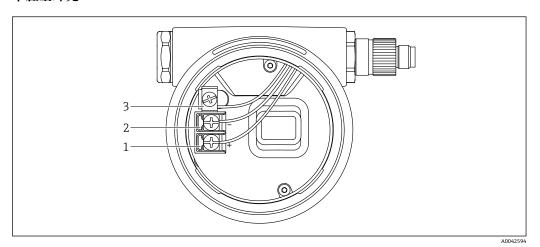
II 级过电压保护

6.2.5 接线

▲ 警告

可能带电!

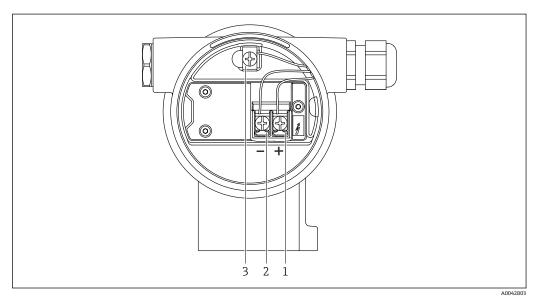
存在电击和/或爆炸风险!


- ▶ 在危险区中使用设备时,确保遵守国家标准和《安全指南》 (XA) 中列举的各项要求。必须使用指定缆塞。
- ▶ 供电电压必须与铭牌参数一致。
- ▶ 进行设备接线操作前,首先需要切断电源。
- ▶ 如需要,连接电源线前将等电势线连接至设备的外部接地端。
- ▶ IEC/EN 61010 标准规定需要安装专用断路保护器。
- ▶ 电缆必须完全绝缘,同时还需保证供电电压和过电压保护等级。
- ▶ 连接电缆必须具有优秀的温度稳定性,同时还需考虑到环境温度的影响。
- ▶ 仅允许在外壳盖关闭的情况下操作测量设备。

按照以下步骤进行设备接线:

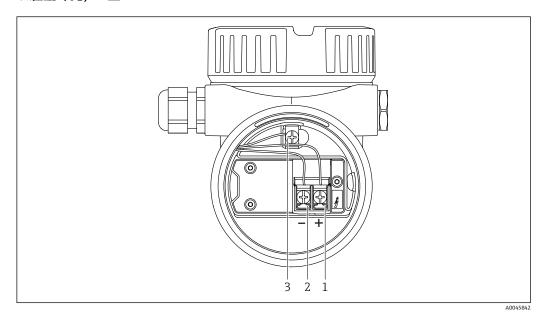
- 1. 松开接线腔盖锁扣(选配)。
- 2. 拧下接线腔盖。
- 3. 将电缆穿入缆塞或电缆入口中。
- 4. 连接电缆。
- 5. 拧紧缆塞或电缆入口,确保气密无泄漏。反向拧紧外壳入口。
- 6. 将接线腔盖重新拧至接线腔上。
- 7. 可选: 使用内六角扳手拧紧电子腔盖锁扣螺丝, 紧固扭矩为 0.7 Nm (0.52 lbf ft) ± 0.2 Nm (0.15 lbf ft)。

6.2.6 接线端子分配


单腔室外壳

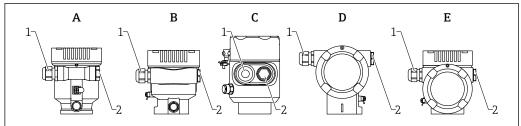
₽8 接线腔中的接线端子和接地端

- 接线端子 (+) 接线端子 (-) 1
- 2
- 3 内部接地端


双腔室外壳

₽9 接线腔中的接线端子和接地端

- 接线端子 (+) 接线端子 (-) 1
- 2
- 3 内部接地端


双腔室外壳,L型

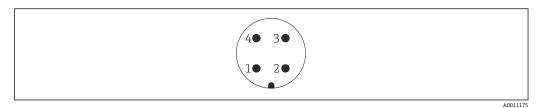
☑ 10 接线腔中的接线端子和接地端

- 接线端子 (+) 接线端子 (-) 1
- 内部接地端

6.2.7 电缆人口

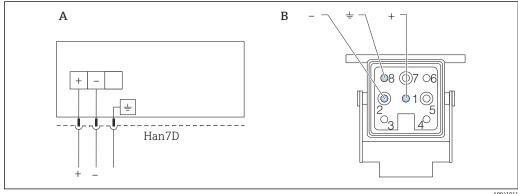
A0046584

- Α 单腔室塑料外壳
- 单腔室铝外壳 В
- 单腔室外壳, 316L, 卫生型
- D 双腔室外壳
- E 双腔室外壳, L型
- 电缆入口 1
- 2 堵头


电缆入口类型与仪表型号相关。

连接电缆必须向下铺设,确保水汽不会进入接线腔。 如需要,建立排水回路或使用防护罩。

仪表插头 6.2.8


带插头的仪表型号无需打开外壳即可接线。 使用随箱包装中的密封圈, 防止水汽进入仪表内部。

带 M12 插头的仪表

- 1 信号+
- 2 无
- 3 信号-
- 4 接地

带 Harting Han7D 插头的仪表

- A 带 Harting Han7D 插头的仪表的电气连接示意图
- B 仪表连接插头视图
- 标色
- ⇒ 黄/绿相间
- + 蓝色

材质

插座和插头触点:镀金黄铜 (CuZn)

6.3 确保防护等级

6.3.1 电缆入口

- M20 缆塞,塑料,IP66/68 NEMA Type 4X/6P
- M20 缆塞, 镀镍黄铜, IP66/68 NEMA Type 4X/6P
- M20 缆塞, 316L, IP66/68 NEMA Type 4X/6P
- M20 螺纹接头,IP66/68 NEMA Type 4X/6P
- G1/2 螺纹接头,IP66/68 NEMA Type 4X/6P 如果选择 G1/2 螺纹接头,仪表出厂时标配 M20 螺纹接头,随箱包装中提供 G1/2 螺纹转接头及配套文档资料
- NPT1/2 螺纹接头, IP66/68 Type 4X/6P
- 运输防护堵头: IP22 Type 2
- HAN7D 直角插头, IP65 NEMA Type 4X
- M12 插头
 - 外壳关闭且连接连接电缆: IP66/67 NEMA Type 4X
 - 外壳打开或未连接连接电缆: IP20 NEMA Type 1

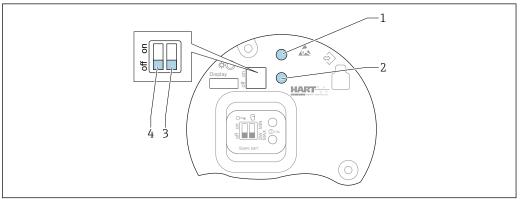
注意

M12 插头和 HAN7D 插头: 安装不当将无法保证 IP 防护等级!

- ▶ 插入并拧紧连接电缆,才能确保仪表的 IP 防护等级。
- ▶ 使用 IP67 NEMA Type 4X 防护等级的连接电缆,才能确保仪表的 IP 防护等级。
- ▶ 安装堵头或连接电缆, 否则无法保证设计 IP 防护等级。

6.4 连接后检查

□ 外壳盖锁扣是否正确拧紧?


□ 电缆或设备是否完好无损(外观检查)?
□ 所用电缆是否符合要求?
□ 安装的电缆是否已消除应力?
□ 所有缆塞是否已安装、牢固拧紧并确保密封无泄漏?
□ 供电电压是否与铭牌参数一致?
□ 是否无极性反接,接线端子分配是否正确?
□ 外壳盖是否正确拧紧?

7 操作方式

7.1 操作方式概述

- 通过电子插件上的操作按键和 DIP 开关操作
- 通过仪表显示单元上的光敏键操作 (可选)
- 使用 SmartBlue 应用程序或 FieldXpert、DeviceCare 通过 Bluetooth®蓝牙无线技术 (可选带 Bluetooth 蓝牙功能的显示单元) 操作
- 通过调试软件(Endress+Hauser FieldCare/DeviceCare、手操器、AMS、PDM 等)操作

7.2 HART 电子插件上的操作按键和 DIP 开关

A00461

図 11 HART 电子插件上的操作按键和 DIP 开关

- 1 操作按键,用于密码重置 (Bluetooth 蓝牙登录和切换至维护用户角色)
- 1+2 操作按键, 用于设备复位 (出厂状态)
- 2 操作按键 2 (仅用于设备恢复出厂状态)
- 3 DIP 开关,报警电流设置
- 4 DIP 开关, 用于锁定和解锁设备

相对于其他操作方式(例如 FieldCare/DeviceCare),通过电子插件上的 DIP 开关进行的设置具有最高优先级。

7.3 操作菜单的结构和功能

现场显示单元与 Endress+Hauser FieldCare 或 DeviceCare 调试软件的操作菜单结构差异如下:

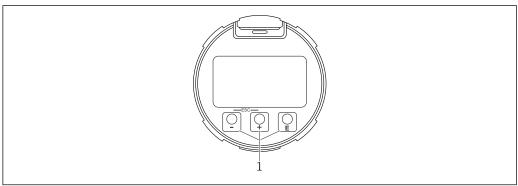
现场显示单元适合在简单应用场合下进行仪表设置。

调试软件 (FieldCare、DeviceCare、SmartBlue、AMS、PDM 等) 能够针对广泛的应用场合设置参数。

调试向导帮助用户在不同应用场合下进行调试,引导用户逐步完成设置。

7.3.1 用户角色及其访问权限

如果已设置仪表访问密码,**操作员**和**维护**(出厂状态)两种用户角色具有不同的参数写访问权限。访问密码可防止未经授权访问设备设置。


如果访问密码输入错误,用户以操作员角色执行操作。

7.4 通过现场显示单元访问操作菜单

7.4.1 仪表显示单元 (可选)

允许通过外壳盖操作光敏键。无需打开仪表外壳。 功能:

- 显示测量值、故障信息和提示信息
- 发生故障时背光显示屏从绿色切换至红色
- 仪表显示单元可以拆除, 方便后续操作
- 根据供电电压和电流消耗打开或关闭背光显示。
- 【】 仪表显示单元也可选配 Bluetooth®蓝牙无线技术。

A0039284

图 12 图形显示屏, 带光敏按键 (1)

- ±接键
 - 在选择列表中向下移动
 - 在功能参数中编辑数值或字符
- □按键
 - 在选择列表中向上移动
 - 在功能参数中编辑数值或字符
- 匡按键
 - 从主显示切换为主菜单。
 - 确认输入
 - ■跳转至下一项
 - 选择菜单项,并进入编辑模式
 - 解锁或锁定显示单元操作
 - 按住囯按键显示选定参数 (如有) 的简短说明
- 迚按键和□按键 (ESC 功能)
 - 退出参数编辑模式,不保存更改后的数值
 - 选择菜单层级:同时按下这两个按键,返回上一级菜单
 - 同时按下这两个按键, 返回上一级菜单

7.4.2 通过 Bluetooth®蓝牙无线技术操作(可选)

前提条件

- 设备配备带 Bluetooth 蓝牙功能的显示单元
- 智能手机或平板电脑(安装有 Endress+Hauser SmartBlue app)、个人计算机(安装有 1.07.05 或更高版本的 DeviceCare 或 FieldXpert SMT70)

蓝牙有效传输范围为 25 m (82 ft)。传输范围取决于环境条件,例如固定装置、墙壁或罐顶。

设备蓝牙连接成功后,显示单元上的操作按键即被锁定。 蓝牙图标闪烁,表示蓝牙连接可用。

SmartBlue App

1. 扫描二维码,或在 App Store 或 Google Play 的搜索栏中输入"SmartBlue"。

A0039186

- 2. 启动 SmartBlue 应用程序。
- 3. 在显示列表中选择设备。
- 4. 登陆:
 - → 输入用户名: admin 密码: 仪表的序列号。
- 5. 首次成功登陆后,请修改密码!

前提条件

系统要求

在智能手机或平板电脑上下载 SmartBlue 应用程序。

有关 SmartBlue app 与移动终端设备兼容性的详细信息,请查看"App Store (Apple)"或"Google Play Store"。

初始密码

首次蓝牙配对时, 初始密码为设备的序列号。

🚹 请注意以下几点

拆除设备上带 Bluetooth 蓝牙功能的显示单元,并将其安装在另一台设备上时:

- 所有登陆信息只保存在带 Bluetooth 蓝牙功能的显示单元中,设备内不保存此类信息
- 用户密码还保存在带 Bluetooth 蓝牙功能的显示单元中

7.5 通过调试软件访问操作菜单

可通过调试软件访问操作菜单:

- 通过 HART 通信,例如 Commubox FXA195
- Endress+Hauser Commubox FXA291 通过 Commubox FXA291,可在设备接口和带 USB 端口的 Windows 个人计算机或笔记本电脑之间建立 CDI 连接。

7.6 DeviceCare

7.6.1 功能范围

连接和设置 Endress+Hauser 现场设备的调试软件。

专用"DeviceCare"调试工具是设置 Endress+Hauser 现场设备的最便捷方式。DeviceCare 与设备类型管理器 (DTM) 搭配使用,可以提供便捷完整的解决方案。

间 详细信息参见《创新手册》IN01047S

操作方式

7.7 FieldCare

7.7.1 功能范围

基于 FDT 技术的 Endress+Hauser 工厂资产管理软件。FieldCare 设置系统中的所有智能 现场设备,帮助用户进行设备管理。基于状态信息,FieldCare 简单高效地检查设备状态 及状况。

访问方式:

- CDI 服务接口
- HART 通信

常见功能:

- 变送器的参数设置
- 上传和保存设备参数 (上传/下载)
- 归档记录测量点
- 显示储存的测量值 (在线记录仪) 和事件日志

FieldCare 的详细信息参见《操作手册》BA00027S 和 BA00059S

8 系统集成

8.1 设备描述文件概述

■ 制造商 ID: 17 (0x0011)
■ 设备型号 ID: 0x11C1
■ HART 版本号: 7.6

■ 登陆以下网址查询设备描述文件 (DD) 、详细信息和文件:

www.endress.com

www.fieldcommgroup.org

8.2 HART 通信传输的测量变量

出厂时,设备参数的测量值分配如下:

设备参数	测量值
PV 值	物位(或线性化值)
SV 值	距离
TV 值	回波强度
QV 值	相对回波强度

- 可在下列子菜单中更改设备参数的测量值分配: 应用 → HART 输出 → HART 输出
- **1** 在 HARTMultidrop 多点回路中,仅可使用一台设备进行模拟量信号传输。对于所有其他设备,在"回路电流模式"参数中选择禁用选项。

9 调试

所有调试软件均带调试向导功能,引导用户设置最重要的设置参数(操作向导 菜单调试 向导)。

9.1 准备工作

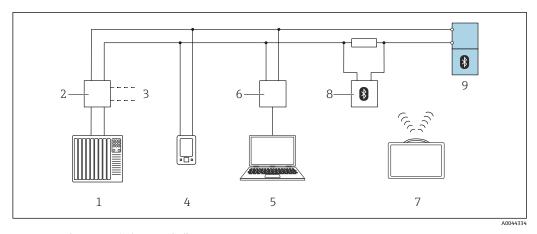
测量范围和测量值单位与铭牌参数一致。

▲ 警告

电流输出设置关乎安全!

设置错误会导致介质泄漏。

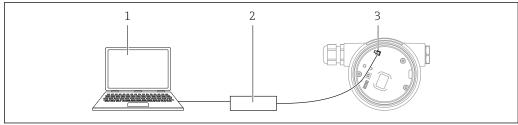
- ▶ 电流输出设置取决于分配 PV 参数中的设置。
- ▶ 更改电流输出设置后,检查量程设置 (LRV 输出值和 URV 输出值); 如需要, 更改设置!


9.2 功能检查

进行测量点调试前,确保已完成安装后检查和连接后检查(对照检查列表):

- "安装后检查"章节
- "连接后检查"章节

9.3 通过 FieldCare 和 DeviceCare 建立连接


9.3.1 通过 HART 通信

■ 13 通过 HART 通信实现远程操作

- 1 PLC (可编程逻辑控制器)
- 2 变送器供电单元,例如 RN42
- 3 Commubox FXA195 和 AMS TrexTM 手操器接口
- 4 AMS TrexTM 手操器
- 5 计算机,安装有调试软件(例如 DeviceCare/FieldCare、AMS Device View、SIMATIC PDM)
- 6 Commubox FXA195 (USB)
- 7 Field Xpert SMT70
- 8 Bluetooth 蓝牙调制解调器 (例如 VIATOR) , 带连接电缆
- 9 变送器

9.3.2 通过服务接口 (CDI)

A0039148

- 1 计算机,安装有 FieldCare/DeviceCare 调试软件
- 2 Commubox FXA291
- 3 测量设备的服务接口 (CDI) (Endress+Hauser 的通用数据接口)

9.4 通过软件设置设备地址

参见"HART 地址"参数

输入 HART 通信的数据交换地址。

- 操作向导 → 调试 → HART 地址
- 应用 → HART 输出 → 设置 → HART 地址

9.5 设置显示语言

9.5.1 现场显示单元

设置显示语言

- 😭 设置显示语言时,需要先解锁显示单元:
- 2. 解锁显示单元操作。
- 3. 在主菜单中选择 Language 参数。
- 4. 按下 医按键。
- 5. 通过迅或□按键选择所需语言。
- 6. 按下 医按键。
- 😭 显示单元操作自动锁定(安全模式 向导除外):
 - 主页面上超过 1 min 无任何按键操作
 - 操作菜单上超过 10 min 无任何按键操作

9.5.2 调试软件

设置显示语言

系统 → 显示 → Language

在 Language 参数中选择;显示与否却决于仪表选型和设置。

设备设置 9.6

料位测量 9.6.1

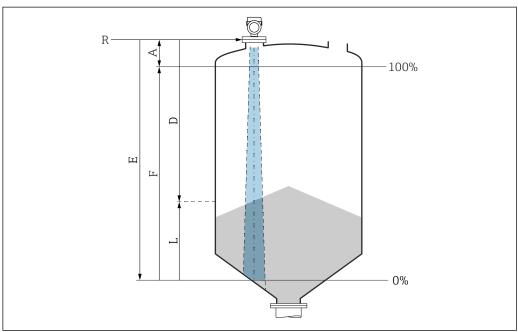


图 14 固体散料料位测量的设置参数

- R 测量参考点
- 天线长度 + 10 mm (0.4 in) Α
- D 距离
- L 液位
- "空标"参数 (= 0%) E
- "满标"参数 (= 100%)

9.6.2 通过调试向导进行调试

FieldCare、DeviceCare、SmartBlue 和显示单元中均提供调试 向导,引导用户完成初始 仪表调试。

参照向导完成仪表调试。

输入各个参数数值, 或选择合适的选项。

注意!

完成所有参数设置后退出调试向导,被修改后的参数均会被保存。此时,设备状态不确 定。

此时, 建议执行设备复位, 恢复至缺省设置。

记录回波曲线 9.7

记录回波曲线作为参考回波曲线,日后用于仪表诊断

完成测量设置后, 建议记录当前回波曲线作为参考回波曲线。

回波曲线 子菜单中的保存参考回波曲线 参数用于记录回波曲线。

诊断→回波曲线→保存参考回波曲线

▶ 在保存参考回波曲线 参数中开启自定义参考曲线 选项

9.8 "仿真" 子菜单

过程变量、脉冲输出或诊断事件仿真。

10 操作

10.1 读取设备锁定状态

锁定状态 参数中显示当前写保护状态

- 现场显示单元@:
 - 主页面上显示圖图标
- 调试软件 (FieldCare/DeviceCare) □:
 菜单路径: 系统 → 设备管理 → 锁定状态

10.2 读取测量值

进入测量值子菜单读取所有测量值。

菜单路径: 应用菜单→测量值 子菜单

10.3 基于过程条件调节设备

相关操作菜单如下:

- 基本设置: 操作向导 菜单
- 高级设置:
 - 诊断 菜单
 - 应用 菜单
 - 系统 菜单

10.4 Heartbeat Technology 心跳技术 (可选)

10.4.1 Heartbeat Verification

"Heartbeat Verification" 向导

该向导用于自动验证设备功能。 结果能够被输出成验证报告文档。

- 通过调试软件和显示单元启动设置向导 如果在显示单元中启动设置向导,仅显示**通过** 选项或**失败** 选项结果。
- 设置向导引导用户创建完整的校验报告

10.4.2 心跳自校验和心跳自监测

- 只有通过 FieldCare、DeviceCare 或 SmartBlue app 操作时才会显示 **Heartbeat** 子菜单。心跳自校验和心跳自监测应用软件包自带设置向导。
- Heartbeat Technology 心跳技术的配套文档资料请登陆 Endress+Hauser 公司网站下载: www.endress.com → 下载。

11 诊断和故障排除

11.1 常规故障排除

11.1.1 常见故障

设备无响应

■ 可能的原因: 供电电压与铭牌参数不一致

补救措施: 使用正确的供电电压

■ 可能的原因: 电源极性错误

补救措施: 正确连接极性

■可能的原因:连接电缆与接线端子间无电气连接 补救措施:检查电缆连接;如需要,重新接线

■ 可能的原因: 负载阻抗过高

补救措施: 增大供电电压, 满足最小端子电压要求

显示单元上无显示值

■ 可能的原因:显示屏设置过亮或过暗

补救措施:

通过显示对比度 参数调高或调低对比度

菜单路径: 系统 → 显示 → 显示对比度

■ 可能的原因:显示单元电缆插头连接错误

补救措施: 正确连接电缆插头

■ 可能的原因:显示单元故障

补救措施: 更换显示单元

启动设备或连接显示单元后,显示单元上显示"Communication error"

■ 可能的原因: 电磁干扰影响

补救措施: 检查设备接地

■ 可能的原因: 连接电缆或显示单元插头故障

补救措施: 更换显示单元

无法通过 CDI 接口进行通信

可能的原因: 计算机 COM 端口设置错误

补救措施: 检查计算机上的 COM 端口设置; 如需要, 修正 COM 端口设置

设备测量不正确

可能的原因:参数设置错误补救措施:检查并修正参数设置

11.2 SmartBlue 操作错误

只有显示单元带蓝牙功能 (可选) 的设备可以通过 SmartBlue 进行操作。

当前列表中未显示设备

■ 可能的原因: 无蓝牙连接

补救措施:通过显示单元或调试软件开启现场设备的蓝牙功能,以及开启智能手机/平板电脑的蓝牙功能

■ 可能的原因: 超出蓝牙有效传输范围

补救措施:减小现场设备和智能手机/平板电脑间的距离

蓝牙有效传输范围为 25 m (82 ft)。

可操作范围为 10 m (33 ft)。

■ 可能的原因: Android 设备未开启定位服务,或未授权 SmartBlue App 使用定位服务 补救措施: 在 Android 设备上开启定位/允许 SmartBlue App 使用定位服务

■ 显示单元无蓝牙功能

设备显示在当前列表中,但无法连接

■ 可能的原因:设备已通过蓝牙连接至其他智能手机或平板电脑 仅允许建立一个点对点连接

补救措施: 断开设备与其他智能手机或平板电脑间的连接

■ 可能的原因: 用户名和密码错误

补救措施: 标准用户名为"admin", 密码为铭牌上标识的设备序列号(前提是用户未事先更改密码)

如果遗忘密码,联系 Endress+Hauser 服务工程师(www.addresses.endress.com)

无法通过 SmartBlue 连接

■可能的原因:输入密码错误

补救措施: 正确输入密码, 注意字母大小写

■可能的原因: 遗忘密码

补救措施: 联系 Endress+Hauser 服务工程师 (www.addresses.endress.com)

无法通过 SmartBlue 登录

■可能的原因: 首次使用设备

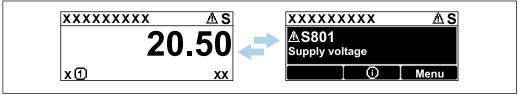
补救措施: 输入用户名"admin"和密码(设备序列号), 密码区分大小写

■ 可能的原因: 电流和电压不正确。 补救措施: 增大供电电压。

无法通过 SmartBlue 操作设备

■ 可能的原因: 输入密码错误

补救措施: 正确输入密码, 注意字母大小写

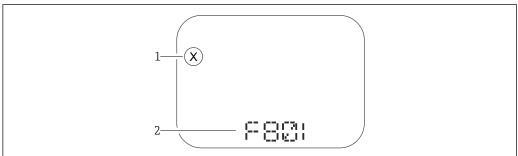

■ 可能的原因: 遗忘密码

补救措施: 联系 Endress+Hauser 服务工程师 (www.addresses.endress.com)

可能的原因: 操作员 选项没有权限 补救措施: 切换至维护 选项用户角色

11.3 诊断信息

设备自监测系统检测到的故障,作为诊断信息与测量值交替显示。



A0051136

図 15 诊断信息与测量值交替显示

同时存在两个或多个诊断事件时, 仅显示优先级最高的信息。

11.3.1 通过现场显示单元查看诊断信息

A0043759

№ 16 段码显示屏, 无按键

- 1 状态图标 (事件类别图标)
- 2 状态信号及诊断事件

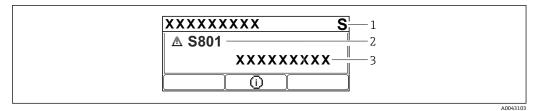


图 17 图形显示屏, 带按键

- 状态信号 1
- 2 状态图标及诊断事件 (开头显示事件类别图标)
- 事件文本 3

调试软件中的诊断信息 11.3.2

发生诊断事件时, 调试软件的左上方状态区中显示状态信息, 同时显示事件类别图标, 符合 NAMUR NE 107 标准。

点击状态信号, 查看详细信息。

进入当前诊断信息参数也能查看待解决诊断信息列表。

进入诊断列表子菜单可以打印诊断事件和补救措施。

11.3.3 状态信号

F

故障(F)

设备发生故障。测量值不再有效。

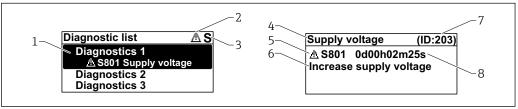
功能检查(C)

设备处于服务模式 (例如在仿真过程中)。

S

超出规格(S)

设备操作:


- 超出技术规格参数 (例如在启动或清洗过程中)
- 超出用户设置范围 (例如传感器频率超出设置范围)

需要维护(M)

需要维护。测量值仍有效。

11.3.4 诊断事件和事件文本

通过诊断事件识别故障。事件文本为用户提供故障信息。此外,诊断事件前显示有相应 状态图标。

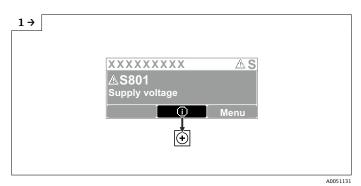
A0051137

- 诊断信息 1
- 2 事件类别图标
- 3 状态信号
- 简要说明 4
- 5 事件类别图标、状态信号、诊断代号
- 补救措施 6
- 服务 ID
- 事件持续时间

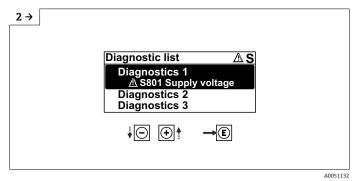
42

事件类别图标

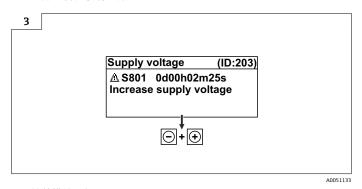
❷"报警"状态


测量中断。输出预设置报警信号, 并生成诊断信息。

△"警告"状态


设备继续测量, 并生成诊断信息。

11.4 补救措施查看


11.4.1 图形显示屏, 带按键

▶ 打开诊断列表 子菜单

▶ 选择并确认诊断事件

▶ 补救措施关闭

11.4.2 操作菜单

诊断信息列表 子菜单中包含最多 5 条当前待解决诊断信息。超过 5 条信息时,显示单元上显示优先级最高的信息。

菜单路径

诊断→诊断列表

进入当前诊断信息参数也能查看诊断信息列表。

菜单路径:诊断→当前诊断信息

调整诊断信息 11.5

设置事件类别:

菜单路径: 诊断→诊断设置→设置

诊断事件列表 11.6

如果补救措施显示 Contact the Service Department (www.addresses.endress.com) ,应提供屏幕上显示的**服务 ID**。

诊断编号	简述	维修指导	状态信号 [出厂]	诊断行为 [出厂]
传感器诊图	fi		<u> </u>	'
062	传感器连接故障	检查传感器连接	F	Alarm
151	传感器模块故障	1. 重启设备 2. 联系服务工程师	F	Alarm
168	黏附检测	检查过程条件	M	Warning 1)
电子部件设	>断			
203	HART 设备故障	检查设备类诊断信息	S	Warning
204	HART 电子模块故障	检查设备类诊断信息	F	Alarm
242	固件不兼容	1. 检查软件 2. 更换主要电子模块	F	Alarm
252	模块不兼容	1. 检查是否安装了正确的电子模块 2. 更换电子模块	F	Alarm
270	主要电子模块故障	更换主要电子模块	F	Alarm
272	主要电子模块故障	1. 重启设备 2. 联系服务工程师	F	Alarm
273	主要电子模块故障	更换主要电子模块	F	Alarm
282	数据存储不一致	重启设备	F	Alarm
283	存储容量不一致	1. 重启设备 2. 联系服务工程师	F	Alarm
287	存储容量不一致	1. 重启设备 2. 联系服务工程师	M	Warning
388	电子模块和 HistoROM 故障	1. 重启设备 2. 更换电子模块和 HistoROM 3. 联系服务部门	F	Alarm
配置诊断				
410	数据传输失败	1. 重新尝试数据传输 2. 检查连接	F	Alarm
412	下载中	下载进行中, 请等待	С	Warning
420	HART 设备设置锁定	检查设备锁定设置。	S	Warning
421	HART 回路电流恒定	检查多点模式或电流仿真。	S	Warning
431	需要微调	执行微调	С	Warning
435	线性化错误	检查线性化表格	F	Alarm
437	设置不兼容	1. 更新固件版本; 2. 返回出厂设置。	F	Alarm

诊断编号	简述	维修指导	状态信号 [出厂]	诊断行为 [出厂]
438	数据集不一致	1. 检查数据集文件; 2. 检查设备参数设置; 3. 下载新的设备参数。	М	Warning
441	电流输出超限	1. 检查过程条件 2. 检查电流输出设置	S	Warning
484	开启故障模式仿真	关闭仿真	С	Alarm
485	开启过程变量仿真	关闭仿真	С	Warning
491	开启电流输出仿真	关闭仿真	С	Warning
495	开启诊断事件仿真	关闭仿真	S	Warning
538	传感器设置无效	1. 检查传感器设置 2. 检查设备设置	F	Alarm
585	距离仿真值	关闭仿真	С	Warning
586	生成抑制	正在生成抑制曲线, 请稍候。	С	Warning
进程诊断				
801	供电电压太低	提高供电电压	F	Alarm
802	供电电压过高	降低供电电压	S	Warning
805	电流回路故障	1. 检查接线 2. 更换电子模块	F	Alarm
806	回路诊断	1. 检查供电电压 2. 检查接线和接线端子	M	Warning ¹⁾
807	20mA 对应电压偏低,无基线	提高供电电压	М	Warning
825	电子模块温度	1. 检查环境温度 2. 检查过程温度	S	Warning
826	传感器温度超限	1. 检查环境温度 2. 检查过程温度	S	Warning
846	非主要 HART 变量超限	检查设备类诊断信息	S	Warning
847	HART 主要变量超限	检查设备类诊断信息	S	Warning
848	HART 设备参数报警	检查设备类诊断信息	S	Warning
941	回波丢失	检查参数"介电常数(DC)值"	S	Warning 1)
942	回波进入安全距离	1. 检查物位 2. 检查安全距离 3. 复位自保持状态	S	Warning ¹⁾
952	检测到泡沫	检查过程条件	С	Warning 1)
968	物位高度受限	1. 检查物位 2. 检查上下限参数	S	Warning

1) 诊断操作可以更改。

11.7 事件日志

11.7.1 事件历史

诊断信息按时间先后顺序显示在**事件日志** 子菜单中。只有通过现场显示单元 (带按键)操作时才会显示此子菜单。如果通过 FieldCare 操作,可以进入 FieldCare 的"Event List/HistoROM"功能参数查看事件列表。

菜单路径:

诊断→事件日志→事件列表

按照时间顺序最多可以显示 100 条事件信息。

事件历史包含:

- ■诊断事件
- 信息事件

除了事件发生时间外,每个事件还分配有图标,显示事件已经发生或已经结束:

- ■诊断事件
 - **①**: 事件发生 ■ **○**: 事件结束
- 信息事件
 - ᢒ:事件发生

查看和关闭补救措施

- 1. 按下 0.
 - ▶ 打开诊断事件的补救措施信息。
- 2. 同时按下 三键和 主键。
 - ▶ 关闭补救措施信息。

11.7.2 筛选事件日志

使用筛选功能设置事件列表子菜单中显示的事件信息类别。

菜单路径: 诊断→事件日志

筛选类别

- 全部
- 故障(F)
- 功能检查(C)
- 超出规格(S)
- 需要维护(M)
- 信息

11.7.3 信息事件概述

信息编号	信息名称	
I1000	(设备正常)	
I1079	传感器已更换	
I1089	上电	
I1090	设置复位	
I1091	设置已更改	
I11074	开启设备校验	
I1110	写保护状态已更改	
I11104	回路诊断	
I1151	历史记录复位	
I1154	复位端子电压	
I1155	复位电子模块温度	
I1157	事件列表储存错误	
I1256	显示: 访问状态已更改	
I1264	安全序列终止	
I1335	固件已变更	
I1397	现场总线: 访问状态已变更	
I1398	CDI: 访问状态已更改	

信息编号	信息名称		
I1440	主要电子模块已更改		
I1444	设备校验成功		
I1445	设备校验失败		
I1461	传感器校验失败		
I1512	开始下载		
I1513	下载完成		
I1514	开始上传		
I1515	上传完成		
I1551	错误已修复		
I1552	故障: 主要电子模块校验		
I1554	安全序列启动		
I1555	安全序列确认		
I1556	安全模式关闭		
I1956	复位		

11.8 复位设备

11.8.1 通过调试软件复位设备

复位设备设置至设置状态-整体或部分

菜单路径:系统→设备管理→复位设备

复位设备 参数

国详细信息参见《仪表功能描述》。

11.8.2 通过电子插件上的按键复位测量设备

重置密码

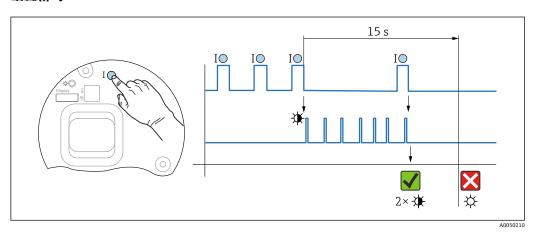
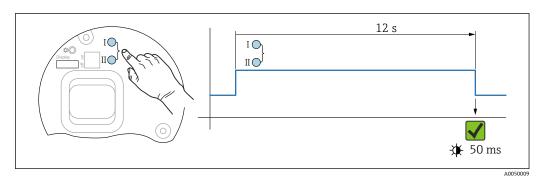


图 18 操作步骤 - 重置密码

删除/重置密码


- 1. 按下操作按键 I 三次。
 - ▶ 重置密码功能开启, LED 指示灯闪烁。

2. 在 15 s 内按下操作按键 I 一次。

→ 密码重置完成, LED 指示灯短暂闪烁。

如果 15 s 内未按下操作按键 I, 密码重置操作取消, LED 指示灯熄灭。

将设备恢复至出厂设置

☑ 19 电子插件上的操作按键

将设备恢复至出厂设置

- ▶ 同时按下操作按键 I 和 II, 并至少保持 12 s。
 - → 设备参数恢复至出厂设置, LED 指示灯短暂闪烁。

11.9 设备信息

信息子菜单中显示所有设备信息。

菜单路径:系统→信息

②详细信息参见《仪表功能描述》。

11.10 固件更新历史

1 通过产品选型表直接订购指定固件版本号的仪表,保证与现有系统或规划系统集成时的固件兼容。

版本号

01.00.00

- ■初始软件
- 生效日期: 2022 年 8 月 1 日

12 维护

无需专业维护。

12.1 外部清洗

- 清洗说明
 - 应使用不会腐蚀表面和密封圈的清洗液
 - 注意仪表的防护等级

12.2 密封圈

☆ 立定期更换仪表过程连接处的过程密封圈。更换间隔时间取决于清洗周期、清洗温度和介质温度。

13 维修

13.1 概述

13.1.1 维修理念

Endress+Hauser 维修理念

- 设备采用模块化设计
- Endress+Hauser 服务工程师或经过培训的合格用户可以执行维护操作
- 套件内含分类备件, 提供配套更换指南
- 😭 服务和备件的详细信息请咨询 Endress+Hauser 当地销售中心。

13.1.2 防爆型设备的维修

▲ 警告

维修不当会影响电气安全!

存在爆炸风险!

- ▶ 仅允许专业技术人员或 Endress+Hauser 服务工程师根据国家法规修理防爆型设备。
- ▶ 必须遵守危险区应用的相关标准和国家法规、《安全指南》 (XA) 和证书。
- ▶ 仅允许使用 Endress+Hauser 原装备件。
- ▶ 注意铭牌上标识的设备型号。仅允许使用同型号部件更换。
- ▶ 参照维修指南操作。
- ▶ 仅允许 Endress+Hauser 服务工程师改装防爆设备,或更换防爆型式。

13.2 备件

- 备件铭牌上标识了允许更换的设备部件,并提供备件信息。
- 设备浏览器(www.endress.com/deviceviewer)中列举了测量设备的所有备件及其订货号,支持直接订购备件。如需要,用户还可以下载配套的《安装指南》。
- **1** 设备的序列号或二维码: 标识在设备铭牌和备件铭牌上。

13.3 更换

▲ 小心

禁止上传或下载在安全应用场合中使用的设备的数据。

▶ 更换整台设备或电子模块后,通过通信接口可以将参数重新传输至设备中。因此,必须事先使用"FieldCare/DeviceCare"软件将参数上传至计算机中。

13.3.1 HistoROM

更换显示单元或变送器电子模块后,无需重新标定设备。

😭 备件未随箱提供 HistoROM。

更换变送器电子模块后,取下 HistoROM 并将其插入新备件。

13.4 返厂

安全返厂要求与具体设备型号和国家法规相关。

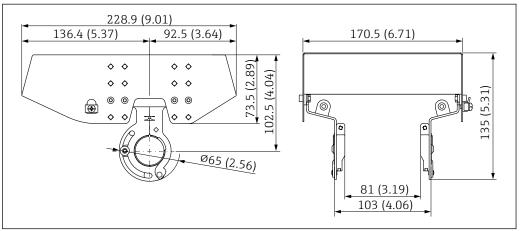
1. 登陆公司网站查询设备返厂说明: http://www.endress.com/support/return-material

▶ 选择地区。

2. 如果仪表需要维修或工厂标定、或订购型号错误或发货错误,请将其返厂。

13.5 处置

为满足 2012/19/EU 指令关于废弃电气和电子设备 (WEEE) 的要求, Endress+Hauser 产品均带上述图标, 尽量避免将废弃电气和电子设备作为未分类城市垃圾废弃处置。带此标志的产品不能列入未分类的城市垃圾处理。在满足适用条件的前提下, 返厂报废。


14 附件

14.1 316L 防护罩

防护罩可以在设备的产品选型表的订购选项"安装附件"中选购。

用于防止设备受到日晒雨淋和结冰。

316L 防护罩适用于铝或 316L 材质的双腔室外壳。随箱提供支座,用于将防护罩直接安装在外壳上。

■ 20 外形尺寸示意图。 测量单位 mm (in)

A0039231

材质

助护罩: 316L固定螺丝: A4支座: 316L附件订货号:

71438303

14.2 塑料防护罩

防护罩可以在设备的产品选型表的订购选项"安装附件"中选购。

用于防止设备受到日晒雨淋和结冰。

塑料防护罩适用于铝材质的单腔室外壳。随箱提供支座,用于将防护罩直接安装在外壳上。

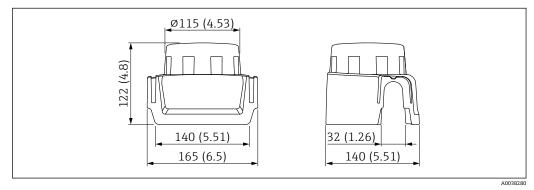
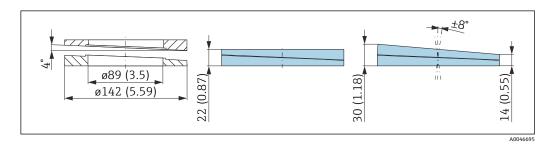


図 21 外形尺寸示意图。 测量单位 mm (in)

材质

塑料

附件订货号:


71438291

14.3 可变角度法兰密封圈

可变角度法兰密封圈用于调整传感器位置,使其轴线对准介质表面。可以随设备一同订购(产品选型表的订购选项"随箱附件"),或者通过具体订货号单独订购。

14.3.1 DN80 可调法兰密封圈

DN80 可调法兰密封圈兼容 EN DN80 PN10/PN40 法兰

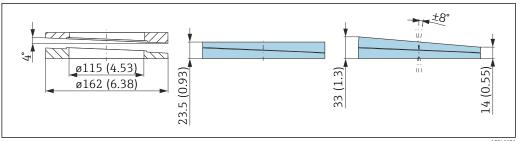
技术参数

■ 材质: EPDM

■推荐螺丝规格: M14

■ 推荐螺丝长度: 100 mm (3.9 in)

■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi)
■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)


订购信息

■ 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。

■ 订货号: 71074263

14.3.2 DN100 可调法兰密封圈

DN100 可调法兰密封圈兼容 EN DN100 PN10/PN16 法兰

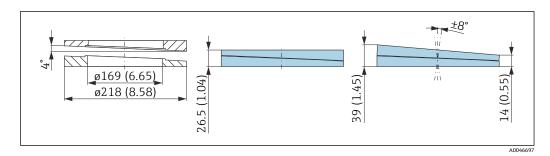
A0046696

技术参数

■ 材质: EPDM

■ 推荐螺丝规格: M14

■ 推荐螺丝长度: 100 mm (3.9 in)


■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi)
■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)

订购信息

- 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。
- 订货号: 71074264

14.3.3 DN150 可调法兰密封圈

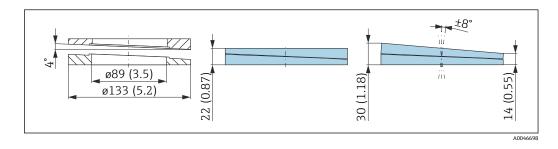
DN150 可调法兰密封圈兼容 EN DN150 PN10/PN19 和 JIS 10K 150A 法兰

技术参数

■ 材质: EPDM

■ 推荐螺丝规格: M18

■ 推荐螺丝长度: 110 mm (4.3 in)


■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi)
■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)

订购信息

- 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。
- 订货号: 71074265

14.3.4 ASME 3" / JIS 80A 可调法兰密封圈

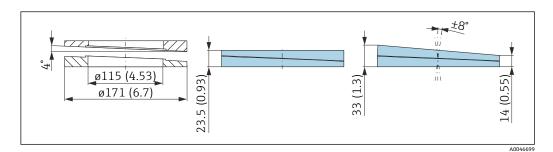
ASME 3" / JIS 80A 可调法兰密封圈兼容 ASME 3" 150 lbs 和 JIS 80A 10K 法兰

技术参数

■ 材质: EPDM

■ 推荐螺丝规格: M14

■ 推荐螺丝长度: 100 mm (3.9 in)


■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi)
■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)

订购信息

- 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。
- 订货号: 71249070

14.3.5 ASME 4"可调法兰密封圈

ASME 4"可调法兰密封圈兼容 ASME 4" 150 lbs 法兰

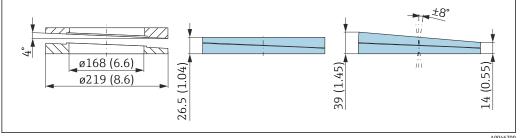
技术参数

■ 材质: EPDM

■ 推荐螺丝规格: M14

■ 推荐螺丝长度: 100 mm (3.9 in)

■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi) ■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)


订购信息

■ 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。

■ 订货号: 71249072

ASME 6" / JIS 150A 可调法兰密封圈 14.3.6

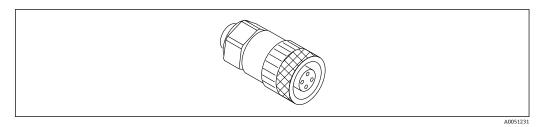
ASME 6" / JIS 150A 可调法兰密封圈兼容 ASME 6" 150 lbs 和 JIS 150A 10K 法兰

技术参数

■ 材质: EPDM

■ 推荐螺丝规格: M18

■ 推荐螺丝长度: 100 mm (3.9 in)


■ 过程压力: -0.1 ... 0.1 bar (-1.45 ... 1.45 psi) ■ 过程温度: -40 ... +80 °C (-40 ... +176 °F)

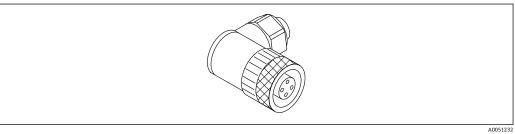
订购信息

■ 法兰密封圈可以随设备一同订购(设备产品选型表的订购选项"随箱附件")。

■ 订货号: 71249073

M12 插座 14.4

■ 22 M12 直型插座


M12 直型插座

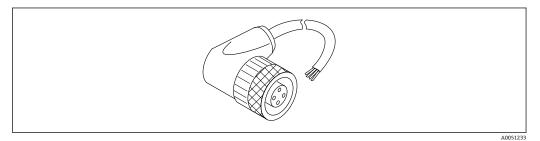
■ 材质:

外壳; PBT; 管接螺母: 镀镍压铸锌; 密封圈: NBR

■ 防护等级 (全密封): IP67

■ Pg 接头: Pg7 ■ 订货号: 52006263

■ 23 M12 弯型插座


M12 弯型插座

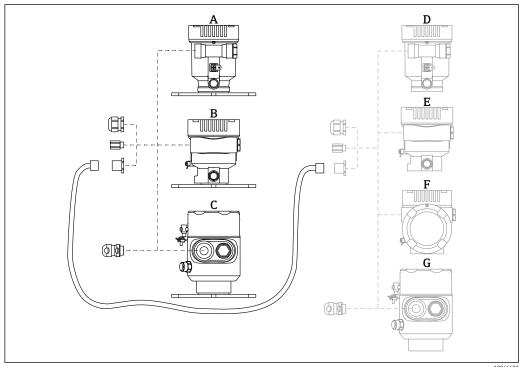
■ 材质:

外壳; PBT; 管接螺母: 镀镍压铸锌; 密封圈: NBR

■ 防护等级 (全密封): IP67

■ Pg 接头: Pg7 ■ 订货号: 71114212

■ 24 M12 弯型插座, 带电缆


M12 弯型插座, 带 5 m (16 ft)电缆

- M12 插座材质:
 - 主体: TPU
 - 管接螺母:镀镍压铸锌
- 电缆材质:
 - **PVC**
- 电缆型号: Li Y YM 4 x0.34 mm² (20 AWG)
- 电缆线芯颜色
 - 1 = BN = 棕色
 - 2 = WH = 白色
 - 3 = BU = 蓝色
 - 4 = BK = 黑色
- 订货号: 52010285

分离型显示单元 FHX50B 14.5

通过 Configurator 产品选型软件订购分离型显示单元。

如需使用分离型显示单元,必须订购设计用于显示单元 FHX50B 的设备型号。

A0046692

- 分离型显示单元的单腔室塑料外壳
- 分离型显示单元的单腔室铝外壳
- 分离型显示单元的卫生型单腔室外壳 (316L) С
- 设备端:设计用于 FHX50B 显示单元的单腔室塑料外壳
- 设备端:设计用于 FHX50B 显示单元的单腔室铝外壳 E
- 设备端: 设计用于 FHX50B 显示单元的双腔室外壳 (L型) 设备端:设计用于 FHX50B 显示单元的卫生型单腔室外壳 (316L)

分离型显示单元的单腔室外壳材质

- 铝
- ■塑料

防护等级:

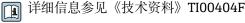
- IP68 / NEMA 6P
- IP66 / NEMA 4x

连接电缆:

- 连接电缆 (可选) 长度不超过 30 m (98 ft)
- 用户自备标准电缆长度不超过 60 m (197 ft) 推荐电缆: 缆普 EtherLine®-P 超五类线。

用户自备连接电缆的规格参数

Push-in CAGE CLAMP®, 直插式连接技术

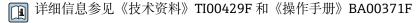

- 导线横截面积:
 - 实心导线: 0.2 ... 0.75 mm² (24 ... 18 AWG)
 - 细绞线: 0.2 ... 0.75 mm² (24 ... 18 AWG)
 - 细绞线; 带绝缘线鼻子: 0.25 ... 0.34 mm²
 - 细绞线; 不带绝缘线鼻子: 0.25 ... 0.34 mm²
- 去皮长度: 7 ... 9 mm (0.28 ... 0.35 in)
- 外径: 6 ... 10 mm (0.24 ... 0.4 in)
- 电缆长度: 不超过 60 m (197 ft)

环境温度范围:

- -40 ... +80 °C (-40 ... +176 °F)
- 可选: -50 ... +80 °C (-58 ... +176 °F)

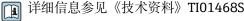
14.6 Commubox FXA195 HART

通过 USB 接口实现与 FieldCare 间的本安型 HART 通信



14.7 HART 回路转换器 HMX50

计算动态 HART 过程变量,将其转换成模拟量电流信号或限定值。


订货号:

71063562

14.8 FieldPort SWA50

适用所有 HART 现场型设备的智能 Bluetooth®蓝牙适配器和/或 WirelessHART 适配器

14.9 WirelessHART 适配器 SWA70

WirelessHART 适配器用于现场设备的无线连接。WirelessHART 适配器易于集成至现场设备和现有网络结构中,提供数据保护和传输安全功能,并且可以与其他无线网络同时使用。

道 详细信息参见《操作手册》BA00061S

14.10 Fieldgate FXA42

Fieldgate 用于连接的 4 ... 20 mA、Modbus RS485 和 Modbus TCP 设备和 SupplyCare Hosting 或 SupplyCare Enterprise 之间的通信。通过 Ethernet TCP/IP、WLAN 或移动通

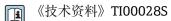
信 (UMTS) 传输信号。提供高级自动化功能,例如内置 Web-PLC、OpenVPN 和其他功能。

间 详细信息参见《技术资料》TI01297S 和《操作手册》BA01778S。

14.11 Field Xpert SMT70

通用高性能平板电脑,用于在防爆 2 区和非防爆区中进行设备组态设置 详细信息参见《技术资料》TI01342S

14.12 DeviceCare SFE100

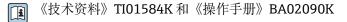

调试软件,适用 HART、PROFIBUS 和 FOUNDATION Fieldbus 现场设备

(技术资料) TI01134S

14.13 FieldCare SFE500

基于 FDT 技术的工厂资产管理软件

设置工厂中的所有智能现场设备,帮助用户进行设备管理。基于状态信息,简单高效地检查设备状态及状况。


14.14 Memograph M

Memograph M 图形显示数据管理仪提供所有相关的过程变量信息。正确记录测量值, 监控限定值和分析测量点。数据储存在 256 MB 内部存储器、SD 卡或 U 盘中。

14.15 RN42

单通道型有源安全栅,宽供电电压范围,用于安全隔离 4 ... 20 mA 标准信号回路,支持 HART 数据透明传输。

15 技术参数

15.1 输入

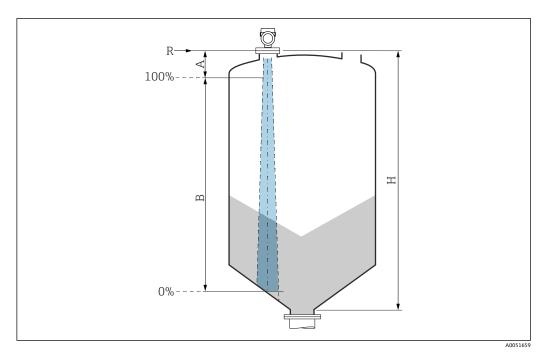
测量变量

测量变量为参考点至介质表面间的距离。基于输入的空标距离"E"计算物位。

测量范围

量程起点即波束触及罐底的那一点。特别是在带锥形出料口的罐体中,物位低于此点,便无法测量。在此类应用中,使用天线角度调节装置可以扩展最大测量范围。

最大测量范围


最大测量范围取决于天线尺寸和结构设计。

天线	最大测量范围
316L 喇叭天线,65 mm (2.6 in)口径	125 m (410 ft)
PTFE 水滴型天线, 50 mm (2 in)口径	50 m (164 ft)
PTFE 齐平安装天线, 80 mm (3 in)口径	125 m (410 ft)

有效测量范围

有效测量范围取决于天线尺寸、介质反射特性、安装位置和任何可能的干扰反射。 理论上,天线末端可以作为量程终点。

取决于物料堆积位置 (休止角), 为了避免天线因磨蚀性介质受损或出现沉积物粘附, 应选择天线末端下方 10 mm (0.4 in)位置处作为量程终点。

- A 天线长度+ 10 mm (0.4 in)
- B 有效测量范围
- H 料仓高度
- R 参考测量点, 因天线系统而异 (参见机械结构)
- ₹ 多种常用工业介质的介电常数 (DC 值) 参见:
 - 介电常数 (DC 值) 手册 (CP01076F)
 - Endress+Hauser "DC Values App" (适用 Android 和 iOS 系统)

工作频率

约 80 GHz

罐体内最多可以安装8台设备,设备之间互不影响。

发射功率

■ 峰值功率: 6.3 mW ■ 平均输出功率: 63 µW

15.2 输出

输出信号

HART

信号编码:

FSK±0.5 mA, 在整个电流范围内

数据传输速率: 1200 Bit/s

电气隔离:

是

电流输出

4 ... 20 mA 叠加 HART 数字量信号, 两线制

提供三种不同的电流输出模式:

- 4.0 ... 20.5 mA
- NAMUR NE 43: 3.8 ... 20.5 mA (出厂设置)
- 美标: 3.9 ... 20.8 mA

报警信号

电流输出

故障模式 (符合 NAMUR NE 43 标准):

■ 最小报警电流 (=出厂设置): 3.6 mA

■ 最大报警电流: 22 mA

现场显示单元

状态信号 (符合 NAMUR NE 107 标准):

纯文本显示

调试软件 (通过服务接口 (CDI))

状态信号 (符合 NAMUR NE 107 标准):

纯文本显示

调试软件 (通过 HART 通信)

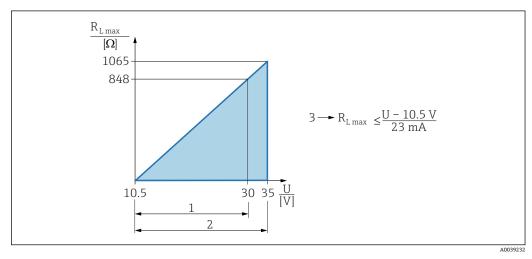
状态信号 (符合 NAMUR NE 107 标准):

纯文本显示

线性化

设备的线性化功能能够将测量值转换成长度、重量、流量或体积单位的数值。

预设置线性化曲线


设备内置线性化表,用于计算下列罐体的体积:

- 方锥形底部
- ■圆锥底罐
- 角锥形底部
- ■卧罐
- 球罐

可以手动输入最多包含 32 对数值的其他线性化表。

负载

4 ... 20 mA HART

- 1 10.5 ... 30 V DC 电源 (本安)
- 2 10.5 ... 35 V DC 电源,用于其他防爆型式的仪表以及非防爆仪表
- 3 R_{Lmax}: 最大负载阻抗
- U 供电电压

副过手操器或安装有调试软件的个人计算机操作:注意安装阻值不低于 250 Ω 的通信电阻。

通信规范参数

HART

制造商 ID:

17 (0x11{hex})

62

设备型号 ID:

0x11C1

设备修订版本号:

1

HART 版本号:

7

DD 版本号:

1

设备描述文件 (DTM、DD)

详细信息和文档资料登陆以下网址查询:

www.endress.com

设备的产品主页: 文档/软件→设备驱动程序

www.fieldcommgroup.org

HART 负载:

最小 250 Ω

HART 设备参数

出厂时,设备参数的测量值分配如下:

设备参数	测量值	
分配 PV 1)	物位(或线性化值)	
分配 SV	距离	
分配 TV	回波强度	
分配 QV	相对回波强度	

1) PV 值始终分配给电流输出。

HART 设备参数选择

- 物位(或线性化值)
- 距离
- 端子电压
- 电子模块温度
- 传感器温度
- ■回波强度
- 相对回波强度
- 非耦合区域
- ■黏附值
- 黏附检测
- 泡沫指数
- 检测到泡沫
- 量程百分比
- 回路电流
- 端子电流 ■ 未使用
- **-** / (文/1)

支持功能

- 突发模式
- ■其他变送器状态
- 设备锁定

WirelessHART 参数

最小启动电压:

10.5 V

启动电流:

< 3.6 mA

启动时间:

< 15 s

最小工作电压:

10.5 V

Multidrop 电流:

4 mA

建立连接所需时间:

<30 s

15.3 环境条件

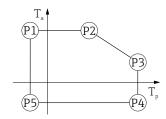
环境温度范围

以下列举数据的适用条件是过程温度不超过+85 ℃ (+185 ℉)。在更高过程温度下,允许环境温度范围会受到限制。

- 不带 LCD 液晶显示:
 - 标准: -40 ... +85 °C (-40 ... +185 °F)
 - 可选温度范围: -50 ... +85 °C (-58 ... +185 °F), 使用寿命缩短, 性能降低
 - 可选温度范围: -60 ... +85 °C (-76 ... +185 °F), 使用寿命缩短, 性能降低; 仪表在温度低于-50 °C (-58 °F)时永久性受损
- 带 LCD 液晶显示: -40 ... +85 °C (-40 ... +185 °F), 显示单元可能无法正常工作, 例如显示速度和显示对比度受影响。在-20 ... +60 °C (-4 ... +140 °F)环境温度范围内, 显示单元正常工作
- 主 在强烈日照的户外使用时:
 - 在阴凉处安装仪表。
 - 避免阳光直射, 在气候炎热的地区中使用时需要特别注意。
 - 安装防护罩 (参见"附件"章节)。

环境温度限制

允许环境温度 (T_a) 取决于所选外壳材质 (Configurator 产品选型软件 \rightarrow 外壳; 材质 \rightarrow) 和过程温度范围 (Configurator 产品选型软件 \rightarrow 应用 \rightarrow)。

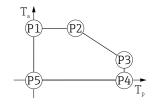

过程连接处温度 (Tp) 对应的允许环境温度 (Ta) 会降低。

下列信息仅仅考虑了仪表的功能要求。防爆型设备可能还受其他限制。

64

塑料外壳

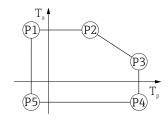
塑料外壳; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)



A0032024

图 25 塑料外壳; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

对于塑料外壳的 CSA C/US 认证型仪表,所选过程温度范围 将从-40 ... +80 ℃ (-40 ... +176 ℉)减小至 0 ... +80 ℃ (+32 ... +176 ℉)。


过程温度范围: 0 ... +80 °C (+32 ... +176 °F), 适用 CSA C/US 认证型仪表和塑料外壳

A0048826

■ 26 塑料外壳;过程温度范围: 0 ... +80 °C (+32 ... +176 °F),适用 CSA C/US 认证型仪表

塑料外壳;过程温度范围:-40 ... +150 ℃ (-40 ... +302 ℉)

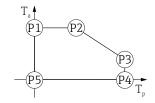

A0032024

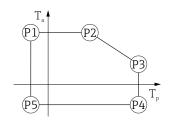
图 27 塑料外壳; 过程温度范围: -40 ... +150 ℃ (-40 ... +302 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F) P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F) P3 = T_p : +150 °C (+302 °F) | T_a : +25 °C (+77 °F) P4 = T_p : +150 °C (+302 °F) | T_a : -40 °C (-40 °F) P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

对于塑料外壳材质的 CSA C/US 认证型仪表, 所选过程温度范围将从-40 ... +150 ℃ (-40 ... +302 ℉)减小至 0 ... +150 ℃ (+32 ... +302 ℉)。

过程温度范围: 0 ... +150 °C (+32 ... +302 °F), 适用 CSA C/US 认证型仪表和塑料外壳

A0048826


図 28 塑料外壳; 过程温度范围: 0 ... +150 ℃ (+32 ... +302 ℉), 适用 CSA C/US 认证型仪表

P1 = T_p : 0 °C (+32 °F) | T_a : +76 °C (+169 °F) P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +150 °C (+302 °F) | T_a : +25 °C (+77 °F) P4 = T_p : +150 °C (+302 °F) | T_a : 0 °C (+32 °F)

P5 = T_p : 0 °C (+32 °F) | T_a : 0 °C (+32 °F)

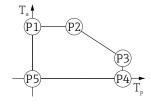
塑料外壳; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

A0032024

图 29 塑料外壳; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)


P3 = T_p : +200 °C (+392 °F) | T_a : +27 °C (+81 °F)

P4 = T_p : +200 °C (+392 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

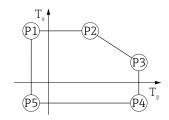
对于塑料外壳材质的 CSA C/US 认证型仪表, 所选过程温度范围将从-40 ... +200 ℃ (-40 ... +392 ℉)减小至 0 ... +200 ℃ (+32 ... +392 ℉)。

过程温度范围: 0 ... +200 °C (+32 ... +392 °F), 适用 CSA C/US 认证型仪表和塑料外壳

A0048826

図 30 塑料外壳; 过程温度范围: 0 ... +200 ℃ (+32 ... +392 ℉), 适用 CSA C/US 认证型仪表

P1 = T_p : 0 °C (+32 °F) | T_a : +76 °C (+169 °F)


P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +200 °C (+392 °F) | T_a : +27 °C (+81 °F)

P4 = T_p : +200 °C (+392 °F) | T_a : 0 °C (+32 °F)

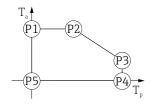
P5 = T_p : 0 °C (+32 °F) | T_a : 0 °C (+32 °F)

塑料外壳; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

Δ0032024

图 31 塑料外壳; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)


P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +280 °C (+536 °F) | T_a : +48 °C (+118 °F)

P4 = T_p : +280 °C (+536 °F) | T_a : -40 °C (-40 °F) P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

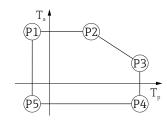
1 对于塑料外壳材质的 CSA C/US 认证型仪表,所选过程温度将从-40 ... +280 ℃ (-40 ... +536 ℉)减小至 0 ... +280 ℃ (+32 ... +536 ℉)。

过程温度限制: 0 ... +280 ℃ (+32 ... +536 ℉), 针对塑料外壳材质的 CSA C/US 认证型仪表

A0048826

图 32 塑料外壳; 过程温度: 0 ... +280 ℃ (+32 ... +536 ℉), 针对 CSA C/US 认证型仪表

P1 = T_p : 0 °C (+32 °F) | T_a : +76 °C (+169 °F)


P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +280 °C (+536 °F) | T_a : +48 °C (+118 °F)

P4 = T_p : +280 °C (+536 °F) | T_a : 0 °C (+32 °F)

P5 = T_p : 0 °C (+32 °F) | T_a : 0 °C (+32 °F)

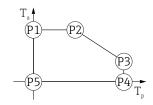
塑料外壳; 过程温度: -40 ... +450 ℃ (-40 ... +842 ℉)

A0032024

國 33 塑料外壳; 过程温度: -40 ... +450 ℃ (-40 ... +842 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)


P3 = T_p : +450 °C (+842 °F) | T_a : +20 °C (+68 °F)

P4 = T_p : +450 °C (+842 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

1 对于塑料外壳材质的 CSA C/US 认证型仪表,所选过程温度将从-40 ... +450 ℃ (-40 ... +842 ℉)减小至 0 ... +450 ℃ (+32 ... +842 ℉)。

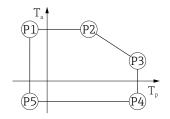
过程温度限制: 0 ... +450 ℃ (+32 ... +842 ℉), 针对塑料外壳材质的 CSA C/US 认证型仪表

A0048826

■ 34 塑料外壳; 过程温度: 0 ... +450 °C (+32 ... +842 °F), 针对 CSA C/US 认证型仪表

P1 = T_p : 0 °C (+32 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)


P3 = T_p : +450 °C (+842 °F) | T_a : +20 °C (+68 °F)

P4 = T_p : +450 °C (+842 °F) | T_a : 0 °C (+32 °F)

P5 = T_p : 0 °C (+32 °F) | T_a : 0 °C (+32 °F)

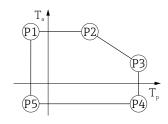
铝外壳, 带涂层

铝外壳; 过程温度范围: -40 ... +80 °C (-40 ... +176 °F)

A0032024

图 35 铝外壳, 带涂层; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F)


P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F)

P3 = T_p : +80 °C (+176 °F) | T_a : +79 °C (+174 °F)

P4 = T_p : +80 °C (+176 °F) | T_a : -40 °C (-40 °F)

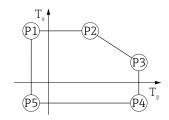
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

铝外壳; 过程温度范围: -40 ... +150 °C (-40 ... +302 °F)

4002202

圓 36 铝外壳, 带涂层; 过程温度范围: -40 ... +150 ℃ (-40 ... +302 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F)


P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F)

P3 = T_p : +150 °C (+302 °F) | T_a : +53 °C (+127 °F)

P4 = T_p : +150 °C (+302 °F) | T_a : -40 °C (-40 °F)

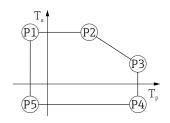
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

铝外壳; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

Δ0032024

图 37 铝外壳, 带涂层; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F)


P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F)

P3 = T_p : +200 °C (+392 °F) | T_a : +47 °C (+117 °F)

P4 = T_p : +200 °C (+392 °F) | T_a : -40 °C (-40 °F)

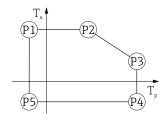
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

铝外壳; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

A0032024

图 38 铝外壳, 带涂层; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F)


P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F)

P3 = T_p : +280 °C (+536 °F) | T_a : +59 °C (+138 °F)

P4 = T_p : +280 °C (+536 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

铝外壳; 过程温度: -40 ... +450 °C (-40 ... +842 °F)

A0032024

图 39 铝外壳, 带涂层; 过程温度: -40 ... +450 ℃ (-40 ... +842 °F)

P1 = T_p : -40 °C (-40 °F) | T_a : +79 °C (+174 °F)

P2 = T_p : +79 °C (+174 °F) | T_a : +79 °C (+174 °F)

P3 = T_p : +450 °C (+842 °F) | T_a : +39 °C (+102 °F)

P4 = T_p : +450 °C (+842 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

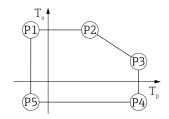
316L 外壳

316L 外壳; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

A0032024

圓 40 316L 外壳; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F)


P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F)

P3 = T_p : +80 °C (+176 °F) | T_a : +77 °C (+171 °F)

P4 = T_p : +80 °C (+176 °F) | T_a : -40 °C (-40 °F)

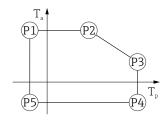
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

316L 外壳; 过程温度范围: -40 ... +150 ℃ (-40 ... +302 ℉)

A0032024

圓 41 316L 外壳; 过程温度范围: -40 ... +150 ℃ (-40 ... +302 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F)


P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F)

P3 = T_p : +150 °C (+302 °F) | T_a : +43 °C (+109 °F)

P4 = T_p : +150 °C (+302 °F) | T_a : -40 °C (-40 °F)

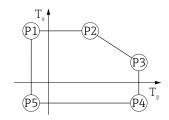
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

316L 外壳; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

A0032024

图 42 316L 外壳; 过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F)


P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F)

P3 = T_p : +200 °C (+392 °F) | T_a : +38 °C (+100 °F)

P4 = T_p : +200 °C (+392 °F) | T_a : -40 °C (-40 °F)

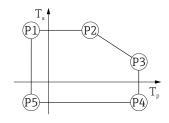
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

316L 外壳; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

Δ0032024

图 43 316L 外壳; 过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F)


P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F)

P3 = T_p : +280 °C (+536 °F) | T_a : +54 °C (+129 °F)

P4 = T_p : +280 °C (+536 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

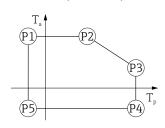
316L 外壳; 过程温度: -40 ... +450 ℃ (-40 ... +842 ℉)

A0032024

圓 44 316L 外壳; 过程温度: -40 ... +450 ℃ (-40 ... +842 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +77 °C (+171 °F)

P2 = T_p : +77 °C (+171 °F) | T_a : +77 °C (+171 °F)


P3 = T_p : +450 °C (+842 °F) | T_a : +31 °C (+88 °F)

P4 = T_p : +450 °C (+842 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

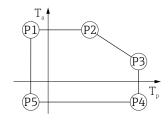
316L 外壳, 卫生型

316L 外壳,卫生型;过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

A0032024

图 45 316L 外壳, 卫生型; 过程温度范围: -40 ... +80 ℃ (-40 ... +176 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)


P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +80 °C (+176 °F) | T_a : +75 °C (+167 °F)

P4 = T_p : +80 °C (+176 °F) | T_a : -40 °C (-40 °F)

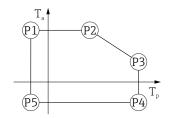
P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

316L 外壳, 卫生型; 过程温度范围: -40 ... +150 ℃ (-40 ... +302 ℉)

Δ0032024

■ 46 316L 外壳,卫生型;过程温度范围:-40 ... +150 °C (-40 ... +302 °F)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)


P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +150 °C (+302 °F) | T_a : +41 °C (+106 °F)

P4 = T_p : +150 °C (+302 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

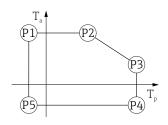
316L 外壳,卫生型;过程温度范围: -40 ... +200 ℃ (-40 ... +392 ℉)

A0032024

图 47 316L 外壳,卫生型;过程温度范围:-40 ... +200 ℃ (-40 ... +392 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)


P3 = T_p : +200 °C (+392 °F) | T_a : +32 °C (+90 °F)

P4 = T_p : +200 °C (+392 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

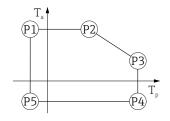
316L 外壳,卫生型;过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

A0032024

图 48 316L 外壳,卫生型;过程温度: -40 ... +280 ℃ (-40 ... +536 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)


P3 = T_p : +280 °C (+536 °F) | T_a : +54 °C (+129 °F)

P4 = T_p : +280 °C (+536 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

316L 外壳,卫生型;过程温度:-40 ... +450 ℃ (-40 ... +842 ℉)

- 尚未规定!!!!!!!!!! 互斥关系 (一个选项排除另一个选项)!!!!!!!!!!

A0032024

图 49 316L 外壳,卫生型;过程温度:-40 ... +450 ℃ (-40 ... +842 ℉)

P1 = T_p : -40 °C (-40 °F) | T_a : +76 °C (+169 °F)

P2 = T_p : +76 °C (+169 °F) | T_a : +76 °C (+169 °F)

P3 = T_p : +450 °C (+842 °F) | T_a : +31 °C (+88 °F)

P4 = T_p : +450 °C (+842 °F) | T_a : -40 °C (-40 °F)

P5 = T_p : -40 °C (-40 °F) | T_a : -40 °C (-40 °F)

储存温度范围

- 不带 LCD 液晶显示: -40 ... +90 °C (-40 ... +194 °F)
- 带 LCD 液晶显示: -40 ... +85 °C (-40 ... +185 °F)

气候等级

符合 DIN EN 60068-2-38 标准 (Z/AD 测试)

安装高度 (符合 IEC61010-1 Ed.3 标准)

- 通常不超过海平面之上 2000 m (6600 ft)
- 安装高度超过 2000 m (6600 ft)时,必须满足下列条件的要求:
 - 供电电压 < 35 V_{DC}
 - 电源提供 1 级过电压保护

防护等级

遵循 IEC 60529 和 NEMA 250-2014 标准测试

外壳

IP66/68 NEMA TYPE 4X/6P

IP68 测试条件: 水下 1.83 m, 持续 24 小时。

电缆入口

- M20 缆塞,塑料,IP66/68 NEMA Type 4X/6P
- M20 缆塞,镀镍黄铜,IP66/68 NEMA TYPE 4X/6P
- M20 缆塞, 316L, IP66/68 NEMA TYPE 4X/6P
- M20 缆塞,卫生型,IP66/68/69 NEMA Type 4X/6P
- M20 螺纹, IP66/68 NEMA TYPE 4X/6P
- G1/2 螺纹, IP66/68 NEMA TYPE 4X/6P 如果选择 G1/2 螺纹接头, 仪表出厂时标配 M20 螺纹接头, 随箱包装中提供 G1/2 螺纹转接头及配套文档资料
- NPT½螺纹, IP66/68 NEMA TYPE 4X/6P
- HAN7D 直角插头, IP65 NEMA Type 4X
- M12 插头
 - 外壳关闭且已连接电缆: IP66/67 NEMA 4X
 - 外壳打开或未连接电缆: IP20, NEMA Type 1

注意

M12 插头和 HAN7D 插头: 安装不当将无法保证 IP 防护等级!

- ▶ 插入并拧紧连接电缆,才能确保仪表的 IP 防护等级。
- ▶ 使用 IP67 NEMA 4X 防护等级的连接电缆,才能确保仪表的 IP 防护等级。
- ▶ 安装堵头或连接电缆,否则无法保证设计防护等级。

抗振性

符合 DIN EN 60068-2-64 / IEC 60068-2-64 标准: 5 ... 2 000 Hz, 1.5 (m/s²)²/Hz

电磁兼容性 (EMC)

- 电磁兼容性符合 EN 61326 标准和 NAMUR NE21 标准的所有要求
- ■安全完整性等级符合 EN 61326-3x 标准
- EMC 测试过程中的最大测量误差: 小于满量程的 0.5 %。

详细信息参见欧盟符合性声明。

15.4 过程条件

过程压力范围

▲ 警告

仪表的最大压力取决于承压能力最弱的部件(例如过程连接、选配安装件或安装附件)。

- ▶ 仅允许在部件允许压力范围内使用仪表!
- ▶ 最大工作压力 (MWP) : 铭牌上标识有 MWP, 该压力为+20 °C (+68 °F)参考温度条件下,设备可持续承受的最大允许工作压力。注意最大工作压力 MWP 与温度的关系。在更高温度下使用法兰连接型仪表时,允许压力值参见下列标准: EN 1092-1 标准 (就材料的温度稳定性而言,1.4435 和1.4404 均被列入 EN 1092-1 标准中;两种材料的化学成分相同)、ASME B16.5 标准、JIS B2220 标准 (始终以最新标准为准)。如有差异,参见《技术资料》的相关章节。
- ► 压力设备指令 (2014/68/EU) 的缩写代号为 **PS**。"PS"对应测量设备的 MWP (最大工作压力)。

下表列举了所用天线能够选择的过程连接的密封圈材质、过程温度(T_P)和过程压力范围之间的关系。

水滴型天线, 50 mm (2 in)口径

过程连接: UNI 法兰

	密封圈	T _p	过程压力范围
	FKM Viton GLT	-40 +80 °C (-40 +176 °F)	-1 3 bar (-14.5 43.5 psi)
A0047827			

♣ 选择 CRN 认证的仪表的压力范围可能还受其他限制。

喇叭天线, 65 mm (2.6 in)口径

过程连接:标准法兰

	密封圈	$T_{\rm p}$	过程压力范围
	石墨	-40 +280 °C (-40 +536 °F)	-1 160 bar (-14.5 2 320.6 psi)
	石墨	-40 +450 °C (-40 +842 °F)	-1 160 bar (-14.5 2320.6 psi)
A0047836			

过程连接: UNI 法兰, 铝材质, 可调节

石墨	密封圈	T _p	过程压力范围
A0048812	石墨	-40 +280 °C (-40 +536 °F)	-1 1 bar (-14.5 14.5 psi)

₽ 选择 CRN 认证的仪表的压力范围可能还受其他限制。

PTFE 齐平安装天线, 80 mm (3 in) 口径

过程连接:标准法兰,带空气吹扫接口

	密封圈	T_{p}	过程压力范围
	FKM Viton GLT	-40 +150 °C (-40 +302 °F)	-1 16 bar (-14.5 232 psi)
	FKM Viton GLT	-40 +200 °C (-40 +392 °F)	-1 16 bar (-14.5 232 psi)
A0047828			

过程连接: UNI 法兰, 316L 材质, 带空气吹扫接口

	密封圈	T _p	过程压力范围
	FKM Viton GLT	-40 +150 °C (-40 +302 °F)	p _{gauge} = -1 1 bar (-14.5 14.5 psi)
	FKM Viton GLT	-40 +200 °C (-40 +392 °F)	$p_{gauge} = -1 \dots 1 \text{ bar } (-14.5 \dots 14.5 \text{ psi})$
A0047829			

过程连接: UNI 法兰, 铝材质, 带空气吹扫接口

	密封圈	T _p	过程压力范围
	FKM Viton GLT	-40 +150 °C (-40 +302 °F)	-1 1 bar (-14.5 14.5 psi)
	FKM Viton GLT	-40 +200 °C (-40 +392 °F)	-1 1 bar (-14.5 14.5 psi)
A0047830			

选择 CRN 认证的仪表的压力范围可能还受其他限制。

介电常数

料位测量

 $\epsilon_r \geq 1.6$

测量小介电常数的介质时,请咨询 Endress+Hauser 当地销售中心。

76

索引

图标 《安全指南》 (XA)
A 安全指南 基本 8
B50备件50铭牌50Bluetooth®蓝牙无线技术31
C 参数访问权限 30 读取权限 30 写访问权限 30 操作 39 操作安全 9 测量设备的用途 参见指定用途
临界工况 8 使用不当 8 产品安全 9 处置 51 CE 认证 (符合性声明) 9
D 读取测量值 39 读取权限 30 DeviceCare 32
F50返厂50访问密码30输入错误30服务接口 (CDI)36符合性声明9FieldCare33功能33FV 值 (HART 变量)34
G 工作场所安全8 故障排除40
HHART 变量34HART 集成34HART 通信35
J 介质8
P PV 值(HART 变量)

	73 49
R 人员要求	8
S 筛选事件日志设备浏览器设备锁定,状态	
基于过程条件调节测量设备事件历史事件列表事件文本	39 45 45 42 22 34
T TV 值 (HART 变量)	34
W 外部清洗	50
X 显示数值 锁定状态 写访问权限 旋转显示模块	30
Y 应用 应用场合 其他风险	
Z 诊断事件	8 7

www.addresses.endress.com